Symanczyk et al., 2003 - Google Patents
Electrical characterization of solid state ionic memory elementsSymanczyk et al., 2003
View PDF- Document ID
- 7189680070938696326
- Author
- Symanczyk R
- Balakrishnan M
- Gopalan C
- Happ T
- Kozicki M
- Kund M
- Mikolajick T
- Mitkova M
- Park M
- Pinnow C
- Robertson J
- Ufert K
- Publication year
- Publication venue
- Proceedings of the non-volatile memory technology symposium
External Links
Snippet
Solid state ionic devices composed of metal doped glasses are among the promising new non-volatile memory technologies. The memory effect is based on polarity-dependent switching at small bias and current due to the electrodeposition of metal in the glassy …
- 230000015654 memory 0 title abstract description 30
Classifications
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L45/00—Solid state devices adapted for rectifying, amplifying, oscillating or switching without a potential-jump barrier or surface barrier, e.g. dielectric triodes; Ovshinsky-effect devices; Processes or apparatus peculiar to the manufacture or treatment thereof or of parts thereof
- H01L45/04—Bistable or multistable switching devices, e.g. for resistance switching non-volatile memory
- H01L45/12—Details
- H01L45/122—Device geometry
- H01L45/1233—Device geometry adapted for essentially vertical current flow, e.g. sandwich or pillar type devices
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L45/00—Solid state devices adapted for rectifying, amplifying, oscillating or switching without a potential-jump barrier or surface barrier, e.g. dielectric triodes; Ovshinsky-effect devices; Processes or apparatus peculiar to the manufacture or treatment thereof or of parts thereof
- H01L45/04—Bistable or multistable switching devices, e.g. for resistance switching non-volatile memory
- H01L45/14—Selection of switching materials
- H01L45/141—Compounds of sulfur, selenium or tellurium, e.g. chalcogenides
- H01L45/143—Selenides, e.g. GeSe
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C13/00—Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00 - G11C25/00
- G11C13/0002—Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00 - G11C25/00 using resistance random access memory [RRAM] elements
- G11C13/0021—Auxiliary circuits
- G11C13/0069—Writing or programming circuits or methods
- G11C2013/009—Write using potential difference applied between cell electrodes
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L45/00—Solid state devices adapted for rectifying, amplifying, oscillating or switching without a potential-jump barrier or surface barrier, e.g. dielectric triodes; Ovshinsky-effect devices; Processes or apparatus peculiar to the manufacture or treatment thereof or of parts thereof
- H01L45/04—Bistable or multistable switching devices, e.g. for resistance switching non-volatile memory
- H01L45/14—Selection of switching materials
- H01L45/141—Compounds of sulfur, selenium or tellurium, e.g. chalcogenides
- H01L45/142—Sulfides, e.g. CuS
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L45/00—Solid state devices adapted for rectifying, amplifying, oscillating or switching without a potential-jump barrier or surface barrier, e.g. dielectric triodes; Ovshinsky-effect devices; Processes or apparatus peculiar to the manufacture or treatment thereof or of parts thereof
- H01L45/04—Bistable or multistable switching devices, e.g. for resistance switching non-volatile memory
- H01L45/16—Manufacturing
- H01L45/1608—Formation of the switching material, e.g. layer deposition
- H01L45/1625—Formation of the switching material, e.g. layer deposition by physical vapor deposition, e.g. sputtering
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L45/00—Solid state devices adapted for rectifying, amplifying, oscillating or switching without a potential-jump barrier or surface barrier, e.g. dielectric triodes; Ovshinsky-effect devices; Processes or apparatus peculiar to the manufacture or treatment thereof or of parts thereof
- H01L45/04—Bistable or multistable switching devices, e.g. for resistance switching non-volatile memory
- H01L45/14—Selection of switching materials
- H01L45/145—Oxides or nitrides
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C13/00—Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00 - G11C25/00
- G11C13/0002—Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00 - G11C25/00 using resistance random access memory [RRAM] elements
- G11C13/0004—Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00 - G11C25/00 using resistance random access memory [RRAM] elements comprising amorphous/crystalline phase transition cells
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C13/00—Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00 - G11C25/00
- G11C13/0002—Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00 - G11C25/00 using resistance random access memory [RRAM] elements
- G11C13/0009—RRAM elements whose operation depends upon chemical change
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L45/00—Solid state devices adapted for rectifying, amplifying, oscillating or switching without a potential-jump barrier or surface barrier, e.g. dielectric triodes; Ovshinsky-effect devices; Processes or apparatus peculiar to the manufacture or treatment thereof or of parts thereof
- H01L45/04—Bistable or multistable switching devices, e.g. for resistance switching non-volatile memory
- H01L45/06—Bistable or multistable switching devices, e.g. for resistance switching non-volatile memory based on solid-state phase change, e.g. between amorphous and crystalline phases, Ovshinsky effect
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L45/00—Solid state devices adapted for rectifying, amplifying, oscillating or switching without a potential-jump barrier or surface barrier, e.g. dielectric triodes; Ovshinsky-effect devices; Processes or apparatus peculiar to the manufacture or treatment thereof or of parts thereof
- H01L45/04—Bistable or multistable switching devices, e.g. for resistance switching non-volatile memory
- H01L45/08—Bistable or multistable switching devices, e.g. for resistance switching non-volatile memory based on migration or redistribution of ionic species, e.g. anions, vacancies
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C2213/00—Indexing scheme relating to G11C13/00 for features not covered by this group
- G11C2213/70—Resistive array aspects
- G11C2213/72—Array wherein the access device being a diode
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C13/00—Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00 - G11C25/00
- G11C13/0002—Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00 - G11C25/00 using resistance random access memory [RRAM] elements
- G11C13/0007—Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00 - G11C25/00 using resistance random access memory [RRAM] elements comprising metal oxide memory material, e.g. perovskites
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/24—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including solid state components for rectifying, amplifying or switching without a potential-jump barrier or surface barrier, e.g. resistance switching non-volatile memory structures
- H01L27/2436—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including solid state components for rectifying, amplifying or switching without a potential-jump barrier or surface barrier, e.g. resistance switching non-volatile memory structures comprising multi-terminal selection components, e.g. transistors
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/24—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including solid state components for rectifying, amplifying or switching without a potential-jump barrier or surface barrier, e.g. resistance switching non-volatile memory structures
- H01L27/2463—Arrangements comprising multiple bistable or multistable switching components of the same type on a plane parallel to the substrate, e.g. cross-point arrays, details of the horizontal layout
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C11/00—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L29/00—Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof; Multistep manufacturing processes therefor
- H01L29/40—Electrodes; Multistep manufacturing processes therefor
- H01L29/43—Electrodes; Multistep manufacturing processes therefor characterised by the materials of which they are formed
- H01L29/49—Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
- H01L29/51—Insulating materials associated therewith
- H01L29/516—Insulating materials associated therewith with at least one ferroelectric layer
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Symanczyk et al. | Electrical characterization of solid state ionic memory elements | |
| Schindler et al. | Bipolar and unipolar resistive switching in Cu-Doped $\hbox {SiO} _ {2} $ | |
| Kozicki et al. | Programmable metallization cell memory based on Ag-Ge-S and Cu-Ge-S solid electrolytes | |
| Kozicki et al. | Nonvolatile memory based on solid electrolytes | |
| US7372065B2 (en) | Programmable metallization cell structures including an oxide electrolyte, devices including the structure and method of forming same | |
| US7288781B2 (en) | Programmable structure, an array including the structure, and methods of forming the same | |
| US7728322B2 (en) | Programmable metallization cell structures including an oxide electrolyte, devices including the structure and method of forming same | |
| Gopalakrishnan et al. | Highly-scalable novel access device based on mixed ionic electronic conduction (MIEC) materials for high density phase change memory (PCM) arrays | |
| US8218350B2 (en) | Programmable metallization cell structure including an integrated diode, device including the structure, and method of forming same | |
| US6985378B2 (en) | Programmable microelectronic device, structure, and system and method of forming the same | |
| Kozicki et al. | Nanoscale memory elements based on solid-state electrolytes | |
| US7772029B2 (en) | Memory element and memory device comprising memory layer positioned between first and second electrodes | |
| US7385219B2 (en) | Optimized solid electrolyte for programmable metallization cell devices and structures | |
| US6825489B2 (en) | Microelectronic device, structure, and system, including a memory structure having a variable programmable property and method of forming the same | |
| KR101148456B1 (en) | Storage element and operating method of storage element | |
| CN102132408B (en) | Storage Elements and Storage Devices | |
| US8134140B2 (en) | Programmable metallization cell structure including an integrated diode, device including the structure, and method of forming same | |
| US20060238185A1 (en) | Probe storage device, system including the device, and methods of forming and using same | |
| US20080007995A1 (en) | Memory cell having a switching active material, and corresponding memory device | |
| KR20060067841A (en) | Memory and Memory | |
| Chen | Ionic memory technology | |
| Balakrishnan et al. | A low power non-volatile memory element based on copper in deposited silicon oxide | |
| Chen | Ionic memories: Status and challenges | |
| Menzel et al. | Redox‐based Resistive Memory | |
| Kozicki | Ionic memory-materials and device characteristics |