[go: up one dir, main page]

Franke et al., 2016 - Google Patents

System characterization of a highly integrated preclinical hybrid MPI-MRI scanner

Franke et al., 2016

Document ID
7304415669161918265
Author
Franke J
Heinen U
Lehr H
Weber A
Jaspard F
Ruhm W
Heidenreich M
Schulz V
Publication year
Publication venue
IEEE transactions on medical imaging

External Links

Snippet

Magnetic particle imaging (MPI) is a novel tracer-based in vivo imaging modality allowing quantitative measurements of the spatial distributions of superparamagnetic iron oxide (SPIO) nanoparticles in three dimensions (3D) and in real time using electromagnetic fields …
Continue reading at ieeexplore.ieee.org (other versions)

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/54Signal processing systems, e.g. using pulse sequences, Generation or control of pulse sequences ; Operator Console
    • G01R33/56Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
    • G01R33/5601Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution involving use of a contrast agent for contrast manipulation, e.g. a paramagnetic, super-paramagnetic, ferromagnetic or hyperpolarised contrast agent
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/54Signal processing systems, e.g. using pulse sequences, Generation or control of pulse sequences ; Operator Console
    • G01R33/56Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
    • G01R33/565Correction of image distortions, e.g. due to magnetic field inhomogeneities
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/32Excitation or detection systems, e.g. using radio frequency signals
    • G01R33/34Constructional details, e.g. resonators, specially adapted to MR
    • G01R33/341Constructional details, e.g. resonators, specially adapted to MR comprising surface coils
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/38Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field
    • G01R33/381Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field using electromagnets
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/38Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field
    • G01R33/3806Open magnet assemblies for improved access to the sample, e.g. C-type or U-type magnets
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/4806Functional imaging of brain activation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/32Excitation or detection systems, e.g. using radio frequency signals
    • G01R33/36Electrical details, e.g. matching or coupling of the coil to the receiver
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/42Screening
    • G01R33/421Screening of main or gradient magnetic field
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radiowaves
    • A61B5/055Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radiowaves involving electronic or nuclear magnetic resonance, e.g. magnetic resonance imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7271Specific aspects of physiological measurement analysis
    • A61B5/7285Specific aspects of physiological measurement analysis for synchronising or triggering a physiological measurement or image acquisition with a physiological event or waveform, e.g. an ECG signal

Similar Documents

Publication Publication Date Title
Franke et al. System characterization of a highly integrated preclinical hybrid MPI-MRI scanner
Goodwill et al. Projection x-space magnetic particle imaging
Mason et al. Design analysis of an MPI human functional brain scanner
Vesanen et al. Hybrid ultra‐low‐field MRI and magnetoencephalography system based on a commercial whole‐head neuromagnetometer
Weizenecker et al. Three-dimensional real-time in vivo magnetic particle imaging
Rahmer et al. Nanoparticle encapsulation in red blood cells enables blood-pool magnetic particle imaging hours after injection
JP5456782B2 (en) MRI band diagnostic method based on non-point analysis
JP2019535424A (en) System and method for automatic detection in magnetic resonance imaging
Vogel et al. Micro-traveling wave magnetic particle imaging—sub-millimeter resolution with optimized tracer LS-008
JP5624028B2 (en) Magnetic resonance imaging apparatus and superconducting quantum interference device detection and method using magnetic field circulation method
CN104619249B (en) Device for producing the Distribution of Magnetic Field for meeting MPI and MRI requirements
JP2012500692A5 (en)
JP5751746B2 (en) Magnetic resonance perfusion image generation method and magnetic resonance apparatus
Pagan et al. Single-sided magnetic particle imaging device with field-free-line geometry for in vivo imaging applications
US9116216B2 (en) MR compatible compression based nuclear imaging system for breast cancer
KR101424552B1 (en) Magnetic resonance imaging device and manufacturing method thereof
Koscielniak et al. 300 MHz continuous wave electron paramagnetic resonance spectrometer for small animal in vivo imaging
Jia et al. Gradient-based pulsed excitation and relaxation encoding in magnetic particle imaging
Attenberger et al. Whole-body FDG PET-MR oncologic imaging: pitfalls in clinical interpretation related to inaccurate MR-based attenuation correction
Colombo et al. Imaging magnetic nanoparticle distributions by atomic magnetometry-based susceptometry
Galante et al. Fast room temperature very low field-magnetic resonance imaging system compatible with magnetoencephalography environment
Poirier‐Quinot et al. Performance of a miniature high‐temperature superconducting (HTS) surface coil for in vivo microimaging of the mouse in a standard 1.5 T clinical whole‐body scanner
McDonough et al. 1-d imaging of a superparamagnetic iron oxide nanoparticle distribution by a single-sided ffl magnetic particle imaging scanner
McDonough et al. Implementation of the surface gradiometer receive coils for the improved detection limit and sensitivity in the single-sided MPI scanner
Oehmigen et al. A dual‐tuned 13C/1H head coil for PET/MR hybrid neuroimaging: Development, attenuation correction, and first evaluation