[go: up one dir, main page]

Xu et al., 2016 - Google Patents

Recent progress in fabrication techniques of graphene nanoribbons

Xu et al., 2016

View HTML
Document ID
7548117683799968266
Author
Xu W
Lee T
Publication year
Publication venue
Materials Horizons

External Links

Snippet

Graphene has been the focus of research since its isolation in 2004. However, the lack of a bandgap restricts its application in semiconductor industry in spite of its predicted extremely high carrier mobility (> 250 000 cm2 V− 1 s− 1). Theoretical studies predict that a band gap …
Continue reading at pubs.rsc.org (HTML) (other versions)

Classifications

    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L51/00Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
    • H01L51/0032Selection of organic semiconducting materials, e.g. organic light sensitive or organic light emitting materials
    • H01L51/0045Carbon containing materials, e.g. carbon nanotubes, fullerenes
    • H01L51/0048Carbon nanotubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANO-TECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANO-STRUCTURES; MEASUREMENT OR ANALYSIS OF NANO-STRUCTURES; MANUFACTURE OR TREATMENT OF NANO-STRUCTURES
    • B82Y10/00Nano-technology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L51/00Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
    • H01L51/05Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof specially adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential- jump barrier or surface barrier multistep processes for their manufacture
    • H01L51/0504Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof specially adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential- jump barrier or surface barrier multistep processes for their manufacture the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or swiched, e.g. three-terminal devices
    • H01L51/0508Field-effect devices, e.g. TFTs
    • H01L51/0512Field-effect devices, e.g. TFTs insulated gate field effect transistors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANO-TECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANO-STRUCTURES; MEASUREMENT OR ANALYSIS OF NANO-STRUCTURES; MANUFACTURE OR TREATMENT OF NANO-STRUCTURES
    • B82Y40/00Manufacture or treatment of nano-structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANO-TECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANO-STRUCTURES; MEASUREMENT OR ANALYSIS OF NANO-STRUCTURES; MANUFACTURE OR TREATMENT OF NANO-STRUCTURES
    • B82Y30/00Nano-technology for materials or surface science, e.g. nano-composites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B31/00Carbon; Compounds thereof
    • C01B31/02Preparation of carbon; Purification; After-treatment
    • C01B31/0206Nanosized carbon materials
    • C01B31/022Carbon nanotubes
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • H01L29/0665Semiconductor bodies; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body the shape of the body defining a nanostructure
    • H01L29/0669Nanowires or nanotubes
    • H01L29/0673Nanowires or nanotubes oriented parallel to a substrate
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device; Multistep manufacturing processes therefor
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L51/00Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
    • H01L51/0001Processes specially adapted for the manufacture or treatment of devices or of parts thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B31/00Carbon; Compounds thereof
    • C01B31/02Preparation of carbon; Purification; After-treatment
    • C01B31/04Graphite, including modified graphite, e.g. graphitic oxides, intercalated graphite, expanded graphite or graphene
    • C01B31/0438Graphene
    • C01B31/0446Preparation

Similar Documents

Publication Publication Date Title
Xu et al. Recent progress in fabrication techniques of graphene nanoribbons
Lu et al. Semiconducting graphene: converting graphene from semimetal to semiconductor
Stanford et al. Emerging nanofabrication and quantum confinement techniques for 2D materials beyond graphene
Liu et al. Aligned, ultralong single‐walled carbon nanotubes: from synthesis, sorting, to electronic devices
Huang et al. Graphene‐based materials: synthesis, characterization, properties, and applications
US10333069B2 (en) Purification of carbon nanotubes via selective heating
Yang et al. Graphene nanomesh: new versatile materials
Nam et al. MoS2 transistors fabricated via plasma-assisted nanoprinting of few-layer MoS2 flakes into large-area arrays
Wei et al. Controllable synthesis of graphene and its applications
Biró et al. Graphene: nanoscale processing and recent applications
Jiao et al. Aligned graphene nanoribbons and crossbars from unzipped carbon nanotubes
Xu et al. Rapid fabrication of designable large‐scale aligned graphene nanoribbons by electro‐hydrodynamic Nanowire Lithography
US8236626B2 (en) Narrow graphene nanoribbons from carbon nanotubes
US8951609B2 (en) CNT devices, low-temperature fabrication of CNT and CNT photo-resists
Wang et al. Field-effect transistors based on two-dimensional materials for logic applications
Ibrahim et al. CVD‐grown horizontally aligned single‐walled carbon nanotubes: synthesis routes and growth mechanisms
Zeng et al. Controllable fabrication of nanostructured graphene towards electronics
Li et al. Photoluminescent semiconducting graphene nanoribbons via longitudinally unzipping single-walled carbon nanotubes
Dong et al. Synthesis and application of graphene nanoribbons
Zhang et al. Carbon nanotubes: from growth, placement and assembly control to 60mV/decade and sub-60 mV/decade tunnel transistors
Wassei et al. Stenciling Graphene, Carbon Nanotubes, and Fullerenes Using Elastomeric Lift‐Off Membranes
KR100810983B1 (en) Positionally selective vertical nanowire growth method, semiconductor nano device comprising vertical nanowire and method for manufacturing same
Kalita et al. Field effect transport properties of chemically treated graphene quantum dots
KR101319612B1 (en) Method of Laterally Growing Carbon Nano Tubes and Field Effect Transistor Using The Same
Huang et al. Adsorption on epitaxial graphene on SiC (0001)