Cavallini et al., 2005 - Google Patents
A new methodology for the identification of PD in electrical apparatus: properties and applicationsCavallini et al., 2005
- Document ID
- 7703299101941427523
- Author
- Cavallini A
- Montanari G
- Puletti F
- Contin A
- Publication year
- Publication venue
- IEEE Transactions on Dielectrics and Electrical Insulation
External Links
Snippet
Applications of a new methodology, aimed at the identification of defects occurring in insulation systems of HV apparatus and based on partial discharge (PD) measurements, are presented in this paper. This methodology relies upon the digital acquisition of a large …
- 238000000034 method 0 title abstract description 33
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/12—Testing dielectric strength or breakdown voltage; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing
- G01R31/1227—Testing dielectric strength or breakdown voltage; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials
- G01R31/1263—Testing dielectric strength or breakdown voltage; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials of solid or fluid materials, e.g. insulation films, bulk material; of semiconductors or LV electronic components or parts; of cable, line or wire insulation
- G01R31/1272—Testing dielectric strength or breakdown voltage; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials of solid or fluid materials, e.g. insulation films, bulk material; of semiconductors or LV electronic components or parts; of cable, line or wire insulation of cable, line or wire insulation, e.g. using partial discharge measurements
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/02—Testing of electric apparatus, lines or components, for short-circuits, discontinuities, leakage of current, or incorrect line connection
- G01R31/024—Arrangements for indicating continuity or short-circuits in electric apparatus or lines, leakage or ground faults
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/12—Testing dielectric strength or breakdown voltage; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing
- G01R31/1227—Testing dielectric strength or breakdown voltage; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials
- G01R31/1254—Testing dielectric strength or breakdown voltage; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials of gas-insulated power appliances or vacuum gaps
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/28—Testing of electronic circuits, e.g. by signal tracer
- G01R31/302—Contactless testing
- G01R31/308—Contactless testing using non-ionising electromagnetic radiation, e.g. optical radiation
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/02—Testing of electric apparatus, lines or components, for short-circuits, discontinuities, leakage of current, or incorrect line connection
- G01R31/021—Testing of cables or conductors
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/02—Testing of electric apparatus, lines or components, for short-circuits, discontinuities, leakage of current, or incorrect line connection
- G01R31/04—Testing connections, e.g. of plugs, of non-disconnectable joints
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/28—Testing of electronic circuits, e.g. by signal tracer
- G01R31/2832—Specific tests of electronic circuits not provided for elsewhere
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/001—Measuring interference from external sources to, or emission from, the device under test, e.g. EMC, EMI, EMP or ESD testing
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/28—Testing of electronic circuits, e.g. by signal tracer
- G01R31/2851—Testing of integrated circuits [IC]
- G01R31/2853—Electrical testing of internal connections or -isolation, e.g. latch-up or chip-to-lead connections
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/34—Testing dynamo-electric machines
- G01R31/343—Testing dynamo-electric machines in operation
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/08—Locating faults in cables, transmission lines, or networks
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R29/00—Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
- G01R29/08—Measuring electromagnetic field characteristics
- G01R29/0807—Measuring electromagnetic field characteristics characterised by the application
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electro-chemical, or magnetic means
- G01N27/72—Investigating or analysing materials by the use of electric, electro-chemical, or magnetic means by investigating magnetic variables
- G01N27/82—Investigating or analysing materials by the use of electric, electro-chemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws
- G01N27/90—Investigating or analysing materials by the use of electric, electro-chemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws using eddy currents
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Cavallini et al. | A new methodology for the identification of PD in electrical apparatus: properties and applications | |
| US7579843B2 (en) | Methods and apparatus for analyzing partial discharge in electrical machinery | |
| Zhao et al. | Detection of power transformer winding deformation using improved FRA based on binary morphology and extreme point variation | |
| Cavallini et al. | A new approach to the diagnosis of solid insulation systems based on PD signal inference | |
| Montanari et al. | Partial discharge diagnostics: from apparatus monitoring to smart grid assessment | |
| US7676333B2 (en) | Method and apparatus for analyzing partial discharges in electrical devices | |
| Zhao et al. | Diagnosing transformer winding deformation faults based on the analysis of binary image obtained from FRA signature | |
| Rahimpour et al. | Mathematical comparison methods to assess transfer functions of transformers to detect different types of mechanical faults | |
| Samimi et al. | Effect of different connection schemes, terminating resistors and measurement impedances on the sensitivity of the FRA method | |
| Aschenbrenner et al. | On line PD measurements and diagnosis on power transformers | |
| Chang et al. | Application of fuzzy entropy to improve feature selection for defect recognition using support vector machine in high voltage cable joints | |
| Meijer et al. | Pattern analysis of partial discharges in SF/sub 6/GIS | |
| GB2518966A (en) | Diagnostic method for automatic discrimination of phase-to-ground partial discharge, phase-to-phase partial discharge and electromagnetic noise | |
| Cavallini et al. | PD inference for the early detection of electrical treeing in insulation systems | |
| Wang et al. | Measurement and analysis of partial discharge using an ultra-high frequency sensor for gas insulated structures | |
| Chen et al. | New diagnosis approach to epoxy resin transformer partial discharge using acoustic technology | |
| CN111007365A (en) | A method and system for ultrasonic partial discharge identification based on neural network | |
| Akhmetov et al. | A bootstrapping solution for effective interpretation of transformer winding frequency response | |
| Kabot et al. | Partial discharges pattern analysis of various covered conductors | |
| Liu et al. | Improved winding mechanical fault type classification methods based on polar plots and multiple support vector machines | |
| Kumar et al. | Classification of PD faults using features extraction and K-means clustering techniques | |
| Ma et al. | Fractal‐based autonomous partial discharge pattern recognition method for MV motors | |
| CN115166446A (en) | A Transformer Partial Discharge Identification Method | |
| Boettcher et al. | Algorithms for a multi-sensor partial discharge expert system applied to medium voltage cable connectors | |
| Sukma et al. | Determination of type of partial discharge in cubicle-type gas insulated switchgear (C-GIS) using artificial neural network |