Doerr et al., 2004 - Google Patents
Wavelength add-drop node using silica waveguide integrationDoerr et al., 2004
- Document ID
- 7804869900320115040
- Author
- Doerr C
- Stulz L
- Levy D
- Pafchek R
- Cappuzzo M
- Gomez L
- Wong-Foy A
- Chen E
- Laskowski E
- Bogert G
- Richards G
- Publication year
- Publication venue
- Journal of lightwave technology
External Links
Snippet
We integrated a wavelength-selective cross-connect, de-interleaver, interleaver, power combiner, and variable attenuators on one silica waveguide chip and a band demultiplexer, band multiplexer, and optical monitor on another. These two chips are used to create an …
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicium dioxide   O=[Si]=O 0 title abstract description 25
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
- G02B6/00—Light guides
- G02B6/24—Coupling light guides
- G02B6/26—Optical coupling means
- G02B6/28—Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
- G02B6/293—Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
- G02B6/29346—Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by wave or beam interference
- G02B6/2935—Mach-Zehnder configuration, i.e. comprising separate splitting and combining means
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
- G02B6/00—Light guides
- G02B6/24—Coupling light guides
- G02B6/26—Optical coupling means
- G02B6/28—Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
- G02B6/293—Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
- G02B6/29379—Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
- G02B6/00—Light guides
- G02B6/10—Light guides of the optical waveguide type
- G02B6/12—Light guides of the optical waveguide type of the integrated circuit kind
- G02B6/12007—Light guides of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer
- G02B6/12009—Light guides of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer comprising arrayed waveguide grating [AWG] devices, i.e. with a phased array of waveguides
- G02B6/12019—Light guides of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer comprising arrayed waveguide grating [AWG] devices, i.e. with a phased array of waveguides characterised by the optical interconnection to or from the AWG devices, e.g. integration or coupling with lasers or photodiodes
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
- G02B6/00—Light guides
- G02B6/10—Light guides of the optical waveguide type
- G02B6/12—Light guides of the optical waveguide type of the integrated circuit kind
- G02B6/12007—Light guides of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer
- G02B6/12009—Light guides of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer comprising arrayed waveguide grating [AWG] devices, i.e. with a phased array of waveguides
- G02B6/12026—Light guides of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer comprising arrayed waveguide grating [AWG] devices, i.e. with a phased array of waveguides characterised by means for reducing the temperature dependence
- G02B6/12028—Light guides of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer comprising arrayed waveguide grating [AWG] devices, i.e. with a phased array of waveguides characterised by means for reducing the temperature dependence based on a combination of materials having a different refractive index temperature dependence, i.e. the materials are used for transmitting light
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
- G02B6/00—Light guides
- G02B6/10—Light guides of the optical waveguide type
- G02B6/12—Light guides of the optical waveguide type of the integrated circuit kind
- G02B2006/12083—Constructional arrangements
-
- G—PHYSICS
- G02—OPTICS
- G02F—DEVICES OR ARRANGEMENTS, THE OPTICAL OPERATION OF WHICH IS MODIFIED BY CHANGING THE OPTICAL PROPERTIES OF THE MEDIUM OF THE DEVICES OR ARRANGEMENTS FOR THE CONTROL OF THE INTENSITY, COLOUR, PHASE, POLARISATION OR DIRECTION OF LIGHT, e.g. SWITCHING, GATING, MODULATING OR DEMODULATING; TECHNIQUES OR PROCEDURES FOR THE OPERATION THEREOF; FREQUENCY-CHANGING; NON-LINEAR OPTICS; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating, or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating, or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/0136—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating, or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour for the control of polarisation, e.g. state of polarisation [SOP] control, polarisation scrambling, TE-TM mode conversion or separation
-
- G—PHYSICS
- G02—OPTICS
- G02F—DEVICES OR ARRANGEMENTS, THE OPTICAL OPERATION OF WHICH IS MODIFIED BY CHANGING THE OPTICAL PROPERTIES OF THE MEDIUM OF THE DEVICES OR ARRANGEMENTS FOR THE CONTROL OF THE INTENSITY, COLOUR, PHASE, POLARISATION OR DIRECTION OF LIGHT, e.g. SWITCHING, GATING, MODULATING OR DEMODULATING; TECHNIQUES OR PROCEDURES FOR THE OPERATION THEREOF; FREQUENCY-CHANGING; NON-LINEAR OPTICS; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F2203/00—Function characteristic
- G02F2203/58—Multi-wavelength, e.g. operation of the device at a plurality of wavelengths
- G02F2203/585—Add/drop devices
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04J—MULTIPLEX COMMUNICATION
- H04J14/00—Optical multiplex systems
- H04J14/02—Wavelength-division multiplex systems
- H04J14/0201—Add-and-drop multiplexing
- H04J14/0202—Arrangements therefor
- H04J14/021—Reconfigurable arrangements, e.g. reconfigurable optical add/drop multiplexers [ROADM] or tunable optical add/drop multiplexers [TOADM]
- H04J14/0212—Reconfigurable arrangements, e.g. reconfigurable optical add/drop multiplexers [ROADM] or tunable optical add/drop multiplexers [TOADM] using optical switches or wavelength selective switches [WSS]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/25—Arrangements specific to fibre transmission
- H04B10/2507—Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion
-
- G—PHYSICS
- G02—OPTICS
- G02F—DEVICES OR ARRANGEMENTS, THE OPTICAL OPERATION OF WHICH IS MODIFIED BY CHANGING THE OPTICAL PROPERTIES OF THE MEDIUM OF THE DEVICES OR ARRANGEMENTS FOR THE CONTROL OF THE INTENSITY, COLOUR, PHASE, POLARISATION OR DIRECTION OF LIGHT, e.g. SWITCHING, GATING, MODULATING OR DEMODULATING; TECHNIQUES OR PROCEDURES FOR THE OPERATION THEREOF; FREQUENCY-CHANGING; NON-LINEAR OPTICS; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F2201/00—Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Doerr et al. | Advances in silica planar lightwave circuits | |
| Miya | Silica-based planar lightwave circuits: passive and thermally active devices | |
| US7409121B2 (en) | Integrateable optical interleaver and de-interleaver | |
| US6961492B2 (en) | Tunable dispersion compensator | |
| Okamoto et al. | 16-channel optical add/drop multiplexer consisting of arrayed-waveguide gratings and double-gate switches | |
| EP0903616A2 (en) | Switchable optical filter | |
| US20080031566A1 (en) | Optical Circuit Device | |
| KR20010041551A (en) | an optical device for dispersion compensation | |
| US6266460B1 (en) | Large-channel-count programmable wavelength add-drop | |
| Doerr et al. | 40-wavelength add drop filter | |
| Doerr et al. | Wavelength add-drop node using silica waveguide integration | |
| Doerr et al. | Integrated band demultiplexer using waveguide grating routers | |
| Doerr et al. | Eight-wavelength add-drop filter with true reconfigurability | |
| US6556736B2 (en) | Dynamic passband shape compensation of optical signals | |
| US8494369B2 (en) | Planar lightwave circuit | |
| Suzuki et al. | Low loss fully reconfigurable wavelength-selective optical 1/spl times/N switch based on transversal filter configuration using silica-based planar lightwave circuit | |
| Ikuma et al. | Integrated 40-$\lambda $1$\,\times\, $2 Wavelength Selective Switch Without Waveguide Crossings | |
| Doerr et al. | Compact and low-loss manner of waveguide grating router passband flattening and demonstration in a 64-channel blocker/multiplexer | |
| Nyman et al. | Technology trends in dense WDM demultiplexers | |
| US20030053754A1 (en) | Dynamic gain equalization arrangement for optical signals | |
| Ikuma et al. | Low-loss integrated 1× 2 gridless wavelength selective switch with a small number of waveguide crossings | |
| Doerr et al. | Potentially inexpensive 10-Gb/s tunable dispersion compensator with low polarization sensitivity | |
| Doerr et al. | Cross-connect-type wavelength add-drop node with integrated band muxes, interleavers, and monitor | |
| Ikeda et al. | C+ L-band 16× 16 16-channel silicon photonics wavelength cross-connect switch based on waveguide Bragg gratings | |
| Doerr et al. | 2 x 2 wavelength-selective cross connect capable of switching 128 channels in sets of eight |