Wang et al., 1999 - Google Patents
A highly convergent and effective synthesis of the phytoalexin elicitor hexasaccharideWang et al., 1999
- Document ID
- 7814451552255166341
- Author
- Wang W
- Kong F
- Publication year
- Publication venue
- Carbohydrate research
External Links
Snippet
The peracetylated hexasaccharide 1, 2, 4-tri-O-acetyl-3-O-(2, 3, 4, 6-tetra-O-acetyl-β-d- glucopyranosyl)-6-O-(2, 3, 4-tri-O-acetyl-6-O-(2, 4-di-O-acetyl-3, 6-di-O-(2, 3, 4, 6-tetra-O- acetyl-β-d-glucopyranosyl)-β-d-glucopyranosyl)-β-d-glucopyranosyl)-α, β-d-glucopyranose …
- 230000015572 biosynthetic process 0 title abstract description 12
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07H—SUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
- C07H15/00—Compounds containing hydrocarbon or substituted hydrocarbon radicals directly attached to hetero atoms of saccharide radicals
- C07H15/02—Acyclic radicals, not substituted by cyclic structures
- C07H15/04—Acyclic radicals, not substituted by cyclic structures attached to an oxygen atom of the saccharide radical
- C07H15/10—Acyclic radicals, not substituted by cyclic structures attached to an oxygen atom of the saccharide radical containing unsaturated carbon-to-carbon bonds
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07H—SUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
- C07H13/00—Compounds containing saccharide radicals esterified by carbonic acid or derivatives thereof, or by organic acids, e.g. phosphonic acids
- C07H13/02—Compounds containing saccharide radicals esterified by carbonic acid or derivatives thereof, or by organic acids, e.g. phosphonic acids by carboxylic acids
- C07H13/04—Compounds containing saccharide radicals esterified by carbonic acid or derivatives thereof, or by organic acids, e.g. phosphonic acids by carboxylic acids having the esterifying carboxyl radicals attached to acyclic carbon atoms
- C07H13/06—Fatty acids
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07H—SUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
- C07H19/00—Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof
- C07H19/02—Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof sharing nitrogen
- C07H19/04—Heterocyclic radicals containing only nitrogen atoms as ring hetero atom
- C07H19/06—Pyrimidine radicals
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07H—SUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
- C07H15/00—Compounds containing hydrocarbon or substituted hydrocarbon radicals directly attached to hetero atoms of saccharide radicals
- C07H15/02—Acyclic radicals, not substituted by cyclic structures
- C07H15/14—Acyclic radicals, not substituted by cyclic structures attached to a sulfur, selenium or tellurium atom of a saccharide radical
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07H—SUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
- C07H15/00—Compounds containing hydrocarbon or substituted hydrocarbon radicals directly attached to hetero atoms of saccharide radicals
- C07H15/20—Carbocyclic rings
- C07H15/203—Monocyclic carbocyclic rings other than cyclohexane rings; Bicylic carbocyclic ring systems
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07H—SUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
- C07H17/00—Compounds containing heterocyclic radicals directly attached to hetero atoms of saccharide radicals
- C07H17/04—Heterocyclic radicals containing only oxygen as ring hetero atoms
- C07H17/06—Benzopyran radicals
- C07H17/065—Benzo[b]pyrans
- C07H17/075—Benzo[b]pyran-2-ones
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07H—SUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
- C07H17/00—Compounds containing heterocyclic radicals directly attached to hetero atoms of saccharide radicals
- C07H17/04—Heterocyclic radicals containing only oxygen as ring hetero atoms
- C07H17/08—Hetero rings containing eight or more ring members, e.g. erythromycins
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07H—SUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
- C07H1/00—Processes for the preparation of sugar derivatives
- C07H1/06—Separation; Purification
- C07H1/08—Separation; Purification from natural products
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07H—SUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
- C07H3/00—Compounds containing only hydrogen atoms and saccharide radicals having only carbon, hydrogen, and oxygen atoms
- C07H3/02—Monosaccharides
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07H—SUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
- C07H15/00—Compounds containing hydrocarbon or substituted hydrocarbon radicals directly attached to hetero atoms of saccharide radicals
- C07H15/18—Acyclic radicals, substituted by carbocyclic rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07H—SUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
- C07H15/00—Compounds containing hydrocarbon or substituted hydrocarbon radicals directly attached to hetero atoms of saccharide radicals
- C07H15/26—Acyclic or carbocyclic radicals, substituted by hetero rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07H—SUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
- C07H13/00—Compounds containing saccharide radicals esterified by carbonic acid or derivatives thereof, or by organic acids, e.g. phosphonic acids
- C07H13/12—Compounds containing saccharide radicals esterified by carbonic acid or derivatives thereof, or by organic acids, e.g. phosphonic acids by acids having the group -X-C(=X)-X-, or halides thereof, in which each X means nitrogen, oxygen, sulfur, selenium or tellurium, e.g. carbonic acid, carbamic acid
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07H—SUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
- C07H5/00—Compounds containing saccharide radicals in which the hetero bonds to oxygen have been replaced by the same number of hetero bonds to halogen, nitrogen, sulfur, selenium, or tellurium
- C07H5/08—Compounds containing saccharide radicals in which the hetero bonds to oxygen have been replaced by the same number of hetero bonds to halogen, nitrogen, sulfur, selenium, or tellurium to sulfur, selenium or tellurium
- C07H5/10—Compounds containing saccharide radicals in which the hetero bonds to oxygen have been replaced by the same number of hetero bonds to halogen, nitrogen, sulfur, selenium, or tellurium to sulfur, selenium or tellurium to sulfur
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07H—SUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
- C07H9/00—Compounds containing a hetero ring sharing at least two hetero atoms with a saccharide radical
- C07H9/02—Compounds containing a hetero ring sharing at least two hetero atoms with a saccharide radical the hetero ring containing only oxygen as ring hetero atoms
- C07H9/04—Cyclic acetals
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07H—SUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
- C07H21/00—Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Mereyala et al. | A highly diastereoselective, practical synthesis of allyl, propargyl 2, 3, 4, 6-tetra-O-acetyl-β-d-gluco, β-d-galactopyranosides and allyl, propargyl heptaacetyl-β-d-lactosides | |
| Weingart et al. | Can preferential β-mannopyranoside formation with 4, 6-O-benzylidene protected mannopyranosyl sulfoxides be reached with trichloroacetimidates? | |
| Fedina et al. | Synthesis of branched arabinofuranose pentasaccharide fragment of mycobacterial arabinans as 2-azidoethyl glycoside | |
| Pozsgay | A new strategy in oligosaccharide synthesis using lipophilic protecting groups: synthesis of a tetracosasaccharide | |
| Wang et al. | Peracetylated laminaribiose: preparation by specific degradation of curdlan and its chemical conversion into N-acetylhyalobiuronic acid | |
| Zhu et al. | A facile and effective synthesis of α-(1→ 6)-linked mannose di-, tri-, tetra-, hexa-, octa-, and dodecasaccharides, and β-(1→ 6)-linked glucose di-, tri-, tetra-, hexa-, and octasaccharides using sugar trichloroacetimidates as the donors and unprotected or partially protected glycosides as the acceptors | |
| Chen et al. | An efficient and practical synthesis of β-(1→ 3)-linked xylooligosaccharides | |
| Wessel et al. | Strategies for the synthesis of branched oligosaccharides of the Shigella flexneri 5a, 5b, and variant X serogroups employing a multifunctional rhamnose precursor | |
| Adel et al. | Efficient intramolecular β-mannoside formation using m-xylylene and isophthaloyl derivatives as rigid spacers | |
| Ferrieres et al. | An efficient route to per-O-acetylated hexofuranoses | |
| Wang et al. | A highly convergent and effective synthesis of the phytoalexin elicitor hexasaccharide | |
| Niedbal et al. | Halide-mediated regioselective 6-O-glycosylation of unprotected hexopyranosides with perbenzylated glycosyl bromide donors | |
| Zhang et al. | A general method for the synthesis of oligosaccharides consisting of α-(1→ 2)-and α-(1→ 3)-linked rhamnan backbones and GlcNAc side chains | |
| Wang et al. | Glycosyl nitrates in synthesis: streamlined access to glucopyranose building blocks differentiated at C-2 | |
| Zhang et al. | Synthesis of an l-rhamnose tetrasaccharide, the common and major structure of the repeating unit of the O-antigenic polysaccharide of a strain of Klebsiella pneumoniae and Pseudomonas holci | |
| Randell et al. | Synthesis of galactofuranosyl-containing oligosaccharides corresponding to the glycosylinositolphospholipid of Trypanosomacruzi | |
| Chiocconi et al. | Synthesis of 4-nitrophenyl β-d-fucofuranoside and β-d-fucofuranosyl-(1→ 3)-d-mannopyranose: modified substrates for studies on catalytic requirements of β-d-galactofuranosidase | |
| Lopez et al. | Investigation of the specificity of an α-l-arabinofuranosidase using C-2 and C-5 modified α-l-arabinofuranosides | |
| Nifant'ev et al. | Synthesis of derivatives of 2-amino-2-deoxy-4-O-(α-and β-d-galactopyranosyl)-d-glucose | |
| Xia et al. | Chemical synthesis of sulfated oligosaccharides with a β-d-Gal-(1→ 3)-[β-d-Gal-(1→ 4)-(α-l-Fuc-(1→ 3)-β-d-GlcNAc-(1→ 6)]-α-d-GalNAc sequence | |
| Popelová et al. | A concise synthesis of 4-nitrophenyl 2-azido-2-deoxy-and 2-acetamido-2-deoxy-D-mannopyranosides | |
| Chen et al. | Synthesis of α-Manp-(1→ 2)-α-Manp-(1→ 3)-α-Manp-(1→ 3)-Manp, the tetrasaccharide repeating unit of Escherichia coli O9a, and α-Manp-(1→ 2)-α-Manp-(1→ 2)-α-Manp-(1→ 3)-α-Manp-(1→ 3)-Manp, the pentasaccharide repeating unit of E. coli O9 and Klebsiella O3 | |
| Yang et al. | Stereoselective synthesis of 2-S-ethyl (phenyl)-2-thio-β-glucopyranosides via 1, 2-migration and concurrent glycosidation of ethyl (phenyl) 2, 3-orthoester-1-thio-α-mannopyranosides | |
| Kochetkov et al. | Synthesis of oligosaccharides by the orthoester method | |
| Feng et al. | An efficient conversion of N-acetyl-D-glucosamine to N-acetyl-D-galactosamine and derivatives |