[go: up one dir, main page]

de Oliveira et al., 2017 - Google Patents

Exploring performance overhead versus soft error detection in lockstep dual-core ARM cortex-A9 processor embedded into Xilinx Zynq APSoC

de Oliveira et al., 2017

View PDF
Document ID
8088317300883252327
Author
de Oliveira Ă
Tambara L
Kastensmidt F
Publication year
Publication venue
International Symposium on Applied Reconfigurable Computing

External Links

Snippet

This paper explores the use of dual-core lockstep as a fault-tolerance solution to increase the dependability in hard-core processors embedded in APSoCs. As a case study, we designed and implemented an approach based on lockstep to protect a dual-core ARM …
Continue reading at ndl.ethernet.edu.et (PDF) (other versions)

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/07Error detection; Error correction; Monitoring responding to the occurence of a fault, e.g. fault tolerance
    • G06F11/14Error detection or correction of the data by redundancy in operation
    • G06F11/1402Saving, restoring, recovering or retrying
    • G06F11/1405Saving, restoring, recovering or retrying at machine instruction level
    • G06F11/1407Checkpointing the instruction stream
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/07Error detection; Error correction; Monitoring responding to the occurence of a fault, e.g. fault tolerance
    • G06F11/0703Error or fault processing not based on redundancy, i.e. by taking additional measures to deal with the error or fault not making use of redundancy in operation, in hardware, or in data representation
    • G06F11/0706Error or fault processing not based on redundancy, i.e. by taking additional measures to deal with the error or fault not making use of redundancy in operation, in hardware, or in data representation the processing taking place on a specific hardware platform or in a specific software environment
    • G06F11/0721Error or fault processing not based on redundancy, i.e. by taking additional measures to deal with the error or fault not making use of redundancy in operation, in hardware, or in data representation the processing taking place on a specific hardware platform or in a specific software environment within a central processing unit [CPU]
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/07Error detection; Error correction; Monitoring responding to the occurence of a fault, e.g. fault tolerance
    • G06F11/08Error detection or correction by redundancy in data representation, e.g. by using checking codes
    • G06F11/10Adding special bits or symbols to the coded information, e.g. parity check, casting out 9's or 11's
    • G06F11/1008Adding special bits or symbols to the coded information, e.g. parity check, casting out 9's or 11's in individual solid state devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/36Preventing errors by testing or debugging software
    • G06F11/362Software debugging
    • G06F11/3636Software debugging by tracing the execution of the program
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/07Error detection; Error correction; Monitoring responding to the occurence of a fault, e.g. fault tolerance
    • G06F11/0703Error or fault processing not based on redundancy, i.e. by taking additional measures to deal with the error or fault not making use of redundancy in operation, in hardware, or in data representation
    • G06F11/0793Remedial or corrective actions
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/07Error detection; Error correction; Monitoring responding to the occurence of a fault, e.g. fault tolerance
    • G06F11/16Error detection or correction of the data by redundancy in hardware
    • G06F11/1658Data re-synchronization of a redundant component, or initial sync of replacement, additional or spare unit
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/36Preventing errors by testing or debugging software
    • G06F11/362Software debugging
    • G06F11/3648Software debugging using additional hardware
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/30Monitoring
    • G06F11/34Recording or statistical evaluation of computer activity, e.g. of down time, of input/output operation; Recording or statistical evaluation of user activity, e.g. usability assessment
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for programme control, e.g. control unit
    • G06F9/06Arrangements for programme control, e.g. control unit using stored programme, i.e. using internal store of processing equipment to receive and retain programme
    • G06F9/30Arrangements for executing machine-instructions, e.g. instruction decode
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F21/00Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F21/50Monitoring users, programs or devices to maintain the integrity of platforms, e.g. of processors, firmware or operating systems
    • G06F21/57Certifying or maintaining trusted computer platforms, e.g. secure boots or power-downs, version controls, system software checks, secure updates or assessing vulnerabilities
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/22Detection or location of defective computer hardware by testing during standby operation or during idle time, e.g. start-up testing
    • G06F11/2205Detection or location of defective computer hardware by testing during standby operation or during idle time, e.g. start-up testing using arrangements specific to the hardware being tested
    • G06F11/2215Detection or location of defective computer hardware by testing during standby operation or during idle time, e.g. start-up testing using arrangements specific to the hardware being tested to test error correction or detection circuits
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/22Detection or location of defective computer hardware by testing during standby operation or during idle time, e.g. start-up testing
    • G06F11/26Functional testing
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F21/00Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F21/70Protecting specific internal or peripheral components, in which the protection of a component leads to protection of the entire computer
    • G06F21/71Protecting specific internal or peripheral components, in which the protection of a component leads to protection of the entire computer to assure secure computing or processing of information
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/50Computer-aided design
    • G06F17/5009Computer-aided design using simulation
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F2201/00Indexing scheme relating to error detection, to error correction, and to monitoring
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F2221/00Indexing scheme relating to security arrangements for protecting computers, components thereof, programs or data against unauthorised activity

Similar Documents

Publication Publication Date Title
de Oliveira et al. Evaluating soft core RISC-V processor in SRAM-based FPGA under radiation effects
Shye et al. PLR: A software approach to transient fault tolerance for multicore architectures
de Oliveira et al. Analyzing lockstep dual-core ARM cortex-A9 soft error mitigation in FreeRTOS applications
Iyer et al. Recent advances and new avenues in hardware-level reliability support
Perez-Cerrolaza et al. GPU devices for safety-critical systems: A survey
Azambuja et al. Detecting SEEs in microprocessors through a non-intrusive hybrid technique
de Oliveira et al. Exploring performance overhead versus soft error detection in lockstep dual-core ARM cortex-A9 processor embedded into Xilinx Zynq APSoC
Hernandez et al. Timely error detection for effective recovery in light-lockstep automotive systems
De Oliveira et al. Applying lockstep in dual-core ARM Cortex-A9 to mitigate radiation-induced soft errors
Löfwenmark et al. Fault and timing analysis in critical multi-core systems: A survey with an avionics perspective
Kretzschmar et al. Synchronization of faulty processors in coarse-grained TMR protected partially reconfigurable FPGA designs
Kasap et al. Novel lockstep-based fault mitigation approach for SoCs with roll-back and roll-forward recovery
Heida Towards a fault tolerant RISC-V softcore
Rollins Hardware and software fault-tolerance of softcore processors implemented in SRAM-based FPGAs
Chaudhari et al. A framework for low overhead hardware based runtime control flow error detection and recovery
Anjam et al. Configurable fault-tolerance for a configurable VLIW processor
Kasap et al. Novel lockstep-based approach with roll-back and roll-forward recovery to mitigate radiation-induced soft errors
Shen et al. Fault tolerance through redundant execution on cots multicores: Exploring trade-offs
Bucciero et al. The PowerPC 405 memory sentinel and injection system
Rajabzadeh et al. Transient detection in COTS processors using software approach
Campagna et al. An hybrid architecture to detect transient faults in microprocessors: An experimental validation
Campagna et al. Hypervisor-based virtual hardware for fault tolerance in COTS processors targeting space applications
APSoC Exploring Performance Overhead Versus Soft Error Detection in Lockstep Dual-Core ARM Cortex-A9 Processor Embedded into Xilinx
Brewerton et al. Implementation of a Basic Single-Microcontroller Monitoring Concept for Safety Critical Systems on a Dual-Core Microcontroller
Memon et al. When Radiation Meets Linux: Analyzing Soft Errors in Linux on COTS SoCs under Proton Irradiation