Stine - Google Patents
by John Andrew StineStine
View PDF- Document ID
- 8191925117464639759
- Author
- Stine J
External Links
Snippet
There are four potential sets of mechanisms that can be used to reduce energy consumption. 1. The first set of mechanisms attempts to reduce power by helping individual terminals to enter low energy states. For example, reducing the time terminals spend …
- 230000005540 biological transmission 0 abstract description 197
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATIONS NETWORKS
- H04W52/00—Power Management, e.g. TPC [Transmission Power Control], power saving or power classes
- H04W52/02—Power saving arrangements
- H04W52/0209—Power saving arrangements in terminal devices
- H04W52/0212—Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave
- H04W52/0216—Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave using a pre-established activity schedule, e.g. traffic indication frame
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATIONS NETWORKS
- H04W52/00—Power Management, e.g. TPC [Transmission Power Control], power saving or power classes
- H04W52/02—Power saving arrangements
- H04W52/0209—Power saving arrangements in terminal devices
- H04W52/0212—Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave
- H04W52/0219—Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave where the power saving management affects multiple terminals
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATIONS NETWORKS
- H04W72/00—Local resource management, e.g. wireless traffic scheduling or selection or allocation of wireless resources
- H04W72/12—Dynamic Wireless traffic scheduling; Dynamically scheduled allocation on shared channel
- H04W72/1205—Schedule definition, set-up or creation
- H04W72/1247—Schedule definition, set-up or creation based on priority of the information source or recipient
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATIONS NETWORKS
- H04W72/00—Local resource management, e.g. wireless traffic scheduling or selection or allocation of wireless resources
- H04W72/12—Dynamic Wireless traffic scheduling; Dynamically scheduled allocation on shared channel
- H04W72/1205—Schedule definition, set-up or creation
- H04W72/1257—Schedule definition, set-up or creation based on resource usage policy
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATIONS NETWORKS
- H04W84/00—Network topologies
- H04W84/18—Self-organizing networks, e.g. ad-hoc networks or sensor networks
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATIONS NETWORKS
- H04W72/00—Local resource management, e.g. wireless traffic scheduling or selection or allocation of wireless resources
- H04W72/04—Wireless resource allocation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATIONS NETWORKS
- H04W52/00—Power Management, e.g. TPC [Transmission Power Control], power saving or power classes
- H04W52/04—TPC [Transmission power control]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATIONS NETWORKS
- H04W74/00—Wireless channel access, e.g. scheduled or random access
- H04W74/08—Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]
- H04W74/0833—Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using a random access procedure
- H04W74/0841—Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using a random access procedure with collision treatment
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATIONS NETWORKS
- H04W74/00—Wireless channel access, e.g. scheduled or random access
- H04W74/04—Scheduled or contention-free access
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATIONS NETWORKS
- H04W84/00—Network topologies
- H04W84/02—Hierarchical pre-organized networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L12/00—Data switching networks
- H04L12/02—Details
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—INDEXING SCHEME RELATING TO CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. INCLUDING HOUSING AND APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B60/00—Information and communication technologies [ICT] aiming at the reduction of own energy use
- Y02B60/50—Techniques for reducing energy-consumption in wireless communication networks
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATIONS NETWORKS
- H04W28/00—Network traffic or resource management
- H04W28/02—Traffic management, e.g. flow control or congestion control
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATIONS NETWORKS
- H04W40/00—Communication routing or communication path finding
- H04W40/02—Communication route or path selection, e.g. power-based or shortest path routing
- H04W40/04—Communication route or path selection, e.g. power-based or shortest path routing based on wireless node resources
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATIONS NETWORKS
- H04W40/00—Communication routing or communication path finding
- H04W40/24—Connectivity information management, e.g. connectivity discovery or connectivity update
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATIONS NETWORKS
- H04W16/00—Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Kredo II et al. | Medium access control in wireless sensor networks | |
| Al-Janabi et al. | An energy efficient hybrid MAC protocol with dynamic sleep-based scheduling for high density IoT networks | |
| US7738413B2 (en) | Minimizing power consumption in a wireless system for a sensor networks using time slots for nodes | |
| Anastasi et al. | Extending the lifetime of wireless sensor networks through adaptive sleep | |
| Ergen et al. | PEDAMACS: Power efficient and delay aware medium access protocol for sensor networks | |
| Di Francesco et al. | Reliability and energy-efficiency in IEEE 802.15. 4/ZigBee sensor networks: An adaptive and cross-layer approach | |
| Yahya et al. | Towards a classification of energy aware MAC protocols for wireless sensor networks | |
| US8085745B2 (en) | Method for improving energy efficiency in wireless mesh network | |
| Stine et al. | Improving energy efficiency of centrally controlled wireless data networks | |
| Liu et al. | LEB-MAC: Load and energy balancing MAC protocol for energy harvesting powered wireless sensor networks | |
| Muzakkari et al. | Recent advances in energy efficient-QoS aware MAC protocols for wireless sensor networks | |
| Ray et al. | ADV-MAC: Analysis and optimization of energy efficiency through data advertisements for wireless sensor networks | |
| Shah et al. | Joint optimization of a protocol stack for sensor networks | |
| Ray et al. | Supporting bursty traffic in wireless sensor networks through a distributed advertisement-based TDMA protocol (ATMA) | |
| Liang et al. | SW-MAC: A low-latency MAC protocol with adaptive sleeping for wireless sensor networks | |
| Tang et al. | Energy Efficient Downlink Transmission in Wireless LANs by Using Low‐Power Wake‐Up Radio | |
| Zhou | Green communication protocols for mobile wireless networks | |
| Stine | Energy conserving protocols for wireless data networks | |
| Lei et al. | Improving the IEEE 802.11 power-saving mechanism in the presence of hidden terminals | |
| Ruiz et al. | QUATTRO: QoS-capable cross-layer MAC protocol for wireless sensor networks | |
| Stine | by John Andrew Stine | |
| Doddapaneni et al. | A survey study on MAC and routing protocols to facilitate energy efficient and effective UAV-based communication systems | |
| Abid et al. | Collision free communication for energy saving in wireless sensor networks | |
| Miller et al. | Improving power save protocols using carrier sensing and busy-tones for dynamic advertisement window | |
| Suresh et al. | MAC and routing layer supports for QoS in MANET: a survey |