Hasib et al., 2010 - Google Patents
Towards public key infrastructure less authentication in session initiation protocolHasib et al., 2010
View PDF- Document ID
- 8241511817747917619
- Author
- Hasib A
- Azfar A
- Morshed M
- Publication year
- Publication venue
- arXiv preprint arXiv:1002.1160
External Links
Snippet
The Session Initiation Protocol (SIP) has become the most predominant protocol for Voice over Internet Protocol (VoIP) signaling. Security of SIP is an important consideration for VoIP communication as the traffic is transmitted over the insecure IP network. And the …
- 230000000977 initiatory 0 title abstract description 5
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L9/00—Cryptographic mechanisms or cryptographic arrangements for secret or secure communication
- H04L9/08—Key distribution or management, e.g. generation, sharing or updating, of cryptographic keys or passwords
- H04L9/0816—Key establishment, i.e. cryptographic processes or cryptographic protocols whereby a shared secret becomes available to two or more parties, for subsequent use
- H04L9/0838—Key agreement, i.e. key establishment technique in which a shared key is derived by parties as a function of information contributed by, or associated with, each of these
- H04L9/0841—Key agreement, i.e. key establishment technique in which a shared key is derived by parties as a function of information contributed by, or associated with, each of these involving Diffie-Hellman or related key agreement protocols
- H04L9/0844—Key agreement, i.e. key establishment technique in which a shared key is derived by parties as a function of information contributed by, or associated with, each of these involving Diffie-Hellman or related key agreement protocols with user authentication or key authentication, e.g. ElGamal, MTI, MQV-Menezes-Qu-Vanstone protocol or Diffie-Hellman protocols using implicitly-certified keys
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L63/00—Network architectures or network communication protocols for network security
- H04L63/06—Network architectures or network communication protocols for network security for supporting key management in a packet data network
- H04L63/061—Network architectures or network communication protocols for network security for supporting key management in a packet data network for key exchange, e.g. in peer-to-peer networks
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L63/00—Network architectures or network communication protocols for network security
- H04L63/08—Network architectures or network communication protocols for network security for supporting authentication of entities communicating through a packet data network
- H04L63/083—Network architectures or network communication protocols for network security for supporting authentication of entities communicating through a packet data network using passwords
- H04L63/0838—Network architectures or network communication protocols for network security for supporting authentication of entities communicating through a packet data network using passwords using one-time-passwords
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L63/00—Network architectures or network communication protocols for network security
- H04L63/08—Network architectures or network communication protocols for network security for supporting authentication of entities communicating through a packet data network
- H04L63/0823—Network architectures or network communication protocols for network security for supporting authentication of entities communicating through a packet data network using certificates
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L9/00—Cryptographic mechanisms or cryptographic arrangements for secret or secure communication
- H04L9/32—Cryptographic mechanisms or cryptographic arrangements for secret or secure communication including means for verifying the identity or authority of a user of the system or for message authentication, e.g. authorization, entity authentication, data integrity or data verification, non-repudiation, key authentication or verification of credentials
- H04L9/3226—Cryptographic mechanisms or cryptographic arrangements for secret or secure communication including means for verifying the identity or authority of a user of the system or for message authentication, e.g. authorization, entity authentication, data integrity or data verification, non-repudiation, key authentication or verification of credentials using a predetermined code, e.g. password, passphrase or PIN
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L65/00—Network arrangements or protocols for real-time communications
- H04L65/10—Signalling, control or architecture
- H04L65/1013—Network architectures, gateways, control or user entities
- H04L65/102—Gateways
- H04L65/1033—Signalling gateways
- H04L65/104—Signalling gateways at the edge
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L63/00—Network architectures or network communication protocols for network security
- H04L63/16—Implementing security features at a particular protocol layer
- H04L63/164—Implementing security features at a particular protocol layer at the network layer
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L63/00—Network architectures or network communication protocols for network security
- H04L63/16—Implementing security features at a particular protocol layer
- H04L63/166—Implementing security features at a particular protocol layer at the transport layer
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L63/00—Network architectures or network communication protocols for network security
- H04L63/08—Network architectures or network communication protocols for network security for supporting authentication of entities communicating through a packet data network
- H04L63/0869—Network architectures or network communication protocols for network security for supporting authentication of entities communicating through a packet data network for achieving mutual authentication
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L65/00—Network arrangements or protocols for real-time communications
- H04L65/10—Signalling, control or architecture
- H04L65/1003—Signalling or session protocols
- H04L65/1009—H.323
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L65/00—Network arrangements or protocols for real-time communications
- H04L65/10—Signalling, control or architecture
- H04L65/1003—Signalling or session protocols
- H04L65/1006—SIP
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L65/00—Network arrangements or protocols for real-time communications
- H04L65/10—Signalling, control or architecture
- H04L65/1066—Session control
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L63/00—Network architectures or network communication protocols for network security
- H04L63/14—Network architectures or network communication protocols for network security for detecting or protecting against malicious traffic
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L63/00—Network architectures or network communication protocols for network security
- H04L63/20—Network architectures or network communication protocols for network security for managing network security; network security policies in general
- H04L63/205—Network architectures or network communication protocols for network security for managing network security; network security policies in general involving negotiation or determination of the one or more network security mechanisms to be used, e.g. by negotiation between the client and the server or between peers or by selection according to the capabilities of the entities involved
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L63/00—Network architectures or network communication protocols for network security
- H04L63/04—Network architectures or network communication protocols for network security for providing a confidential data exchange among entities communicating through data packet networks
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Kilinc et al. | A survey of SIP authentication and key agreement schemes | |
| KR101394730B1 (en) | Identity based authenticated key agreement protocol | |
| KR101468784B1 (en) | Secure key management in multimedia communication system | |
| EP1946479B1 (en) | Communication securiy | |
| US7382881B2 (en) | Lawful interception of end-to-end encrypted data traffic | |
| Fischl et al. | Framework for establishing a secure real-time transport protocol (SRTP) security context using datagram transport layer security (DTLS) | |
| US20020129236A1 (en) | VoIP terminal security module, SIP stack with security manager, system and security methods | |
| CN102484582A (en) | Secure key management in conferencing system | |
| Ring et al. | A new authentication mechanism and key agreement protocol for sip using identity-based cryptography | |
| Karopoulos et al. | PrivaSIP: Ad-hoc identity privacy in SIP | |
| Karopoulos et al. | A framework for identity privacy in SIP | |
| Palmieri et al. | Providing true end-to-end security in converged voice over IP infrastructures | |
| Cakulev et al. | MIKEY-IBAKE: Identity-Based Authenticated Key Exchange (IBAKE) Mode of Key Distribution in Multimedia Internet KEYing (MIKEY) | |
| Bilien | Key Agreement for secure Voice over IP | |
| Moravčík et al. | Survey of real-time multimedia security mechanisms | |
| Hasib et al. | Towards public key infrastructure less authentication in session initiation protocol | |
| Jung et al. | Using SIP identity to prevent man-in-the-middle attacks on ZRTP | |
| Floroiu et al. | A comparative analysis of the security aspects of the multimedia key exchange protocols | |
| Pecori et al. | A key agreement protocol for P2P VoIP applications | |
| Choi et al. | A lightweight authentication and hop-by-hop security mechanism for sip network | |
| Deusajute et al. | The sip security enhanced by using pairing-assisted massey-omura signcryption | |
| Cheng | Internet Engineering Task Force H. Wang, Ed. Internet-Draft Y. Yang Intended status: Informational X. Kang Expires: October 14, 2019 Huawei International Pte. Ltd. | |
| Forsberg | Use cases of implicit authentication and key establishment with sender and receiver ID binding | |
| Aghila et al. | An Analysis of VoIP Secure Key Exchange Protocols Against Man-In-The-Middle Attack | |
| Dunte et al. | Secure Voice-over-IP |