Winzer et al., 2004 - Google Patents
System trade-offs and optical modulation formatsWinzer et al., 2004
- Document ID
- 8491180032724392692
- Author
- Winzer P
- Essiambre R
- Publication year
- Publication venue
- Optical Amplifiers and Their Applications
External Links
Snippet
System trade-offs for optical modulation formats Page 1 Format change Req. OSNR gain NRZ
⇨ RZ 1 to 3 dB OOK ⇨ DPSK 3 dB NRZ-OOK ⇨ DUO –2 dB DPSK ⇨ DQPSK 0 to –4 dB System
trade-offs and optical modulation formats PJ Winzer and R.-J. Essiambre Bell Laboratories …
- 230000000051 modifying 0 title abstract description 32
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/25—Arrangements specific to fibre transmission
- H04B10/2507—Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion
- H04B10/2543—Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion due to fibre non-linearities, e.g. Kerr effect
- H04B10/2557—Cross-phase modulation [XPM]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/25—Arrangements specific to fibre transmission
- H04B10/2507—Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion
- H04B10/2513—Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion due to chromatic dispersion
- H04B10/2525—Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion due to chromatic dispersion using dispersion-compensating fibres
- H04B10/25253—Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion due to chromatic dispersion using dispersion-compensating fibres with dispersion management, i.e. using a combination of different kind of fibres in the transmission system
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/25—Arrangements specific to fibre transmission
- H04B10/2507—Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion
- H04B10/2513—Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion due to chromatic dispersion
- H04B10/25137—Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion due to chromatic dispersion using pulse shaping at the transmitter, e.g. pre-chirping or dispersion supported transmission [DST]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/50—Transmitters
- H04B10/501—Structural aspects
- H04B10/503—Laser transmitters
- H04B10/505—Laser transmitters using external modulation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/29—Repeaters
- H04B10/291—Repeaters in which processing or amplification is carried out without conversion of the main signal from optical form
- H04B10/293—Signal power control
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/60—Receivers
- H04B10/66—Non-coherent receivers, e.g. using direct detection
- H04B10/69—Electrical arrangements in the receiver
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/60—Receivers
- H04B10/66—Non-coherent receivers, e.g. using direct detection
- H04B10/67—Optical arrangements in the receiver
- H04B10/676—Optical arrangements in the receiver for all-optical demodulation of the input optical signal
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/50—Transmitters
- H04B10/516—Details of coding or modulation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/11—Arrangements specific to free-space transmission, i.e. transmission through air or vacuum
- H04B10/112—Line-of-sight transmission over an extended range
- H04B10/1121—One-way transmission
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04J—MULTIPLEX COMMUNICATION
- H04J14/00—Optical multiplex systems
- H04J14/02—Wavelength-division multiplex systems
- H04J14/0278—WDM optical network architectures
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/07—Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B2210/00—Indexing scheme relating to optical transmission systems
- H04B2210/25—Distortion or dispersion compensation
- H04B2210/258—Distortion or dispersion compensation treating each wavelength or wavelength band separately
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04J—MULTIPLEX COMMUNICATION
- H04J14/00—Optical multiplex systems
- H04J14/02—Wavelength-division multiplex systems
- H04J14/0227—Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
- H04J14/0241—Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/03—Arrangements for fault recovery
- H04B10/032—Arrangements for fault recovery using working and protection systems
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Gnauck et al. | 2.5 Tb/s (64× 42.7 Gb/s) transmission over 40× 100 km NZDSF using RZ-DPSK format and all-Raman-amplified spans | |
| US6731877B1 (en) | High capacity ultra-long haul dispersion and nonlinearity managed lightwave communication systems | |
| JP4579086B2 (en) | Transmission of optical signals of different modulation formats in the discrete band | |
| JP2003060580A (en) | Optical communication system | |
| US8478125B2 (en) | Optical PON network using passive DPSK demodulation | |
| JP2004530374A (en) | Receiver and method for receiving a multi-channel optical signal | |
| Mikkelsen et al. | High spectral efficiency (0.53 bit/s/Hz) WDM transmission of 160 Gb/s per wavelength over 400 km of fiber | |
| Zhu et al. | 3.08 Tb/s (77× 42.7 Gb/s) transmission over 1200 km of non-zero dispersion-shifted fiber with 100-km spans using C-and L-band distributed Raman amplification | |
| Nesset et al. | 10 Gbit/s bidirectional transmission in 1024-way split, 110 km reach, PON system using commercial transceiver modules, super FEC and EDC | |
| Nielsen et al. | 3.28-Tb/s (82× 40Gb/s) transmission over 3× 100 km nonzerodispersion fiber using dual C-and L-band hybrid Raman/Erbium-doped inline amplifiers | |
| US20050201762A1 (en) | Optical RZ-duobinary transmission system with narrow bandwidth optical filter | |
| US7379670B2 (en) | Method and apparatus for chromatic dispersion compensation | |
| US6920277B2 (en) | Optical bypass method and architecture | |
| Miyamoto et al. | Duobinary carrier-suppressed return-to-zero format and its application to 100GHz-spaced 8× 43-Gbit/s DWDM unrepeatered transmission over 163 km | |
| Zhu et al. | 3.08 Tbit/s (77× 42.7 Gbit/s) WDM transmission over 1200 km fibre with 100 km repeater spacing using dual C-and L-band hybrid Raman/erbium-doped inline amplifiers | |
| Winzer et al. | System trade-offs and optical modulation formats | |
| Becouarn et al. | 42× 42.7 Gb/s RZ-DPSK transmission over a 4820 km long NZDSF deployed line using C-band-only EDFAs | |
| Zhu et al. | Broad bandwidth seamless transmission of 3.56 Tbit/s over 40× 100 km of NZDF fibre using CSRZ-DPSK format | |
| Chung et al. | Performance comparison between Manchester and inverse-RZ coding in a wavelength re-modulated WDM-PON | |
| Jensen et al. | XPM-induced degradation of multilevel phase modulated channel caused by neighboring NRZ modulated channels | |
| Tsuritani et al. | Study on optimum optical pre-filtering condition for highly spectral-efficient ultralong-haul transmission using 40Gbit/s CS-RZ signal and all-Raman repeaters | |
| Downie et al. | 10.7 Gb/s CWDM system transmission with 8 channels in 140 nm bandwidth over 120 km using two SOAs | |
| Costa et al. | Analysis of DQPSK signals performance in upgrading metropolitan area networks to 40 Gbit/s per channel | |
| Karasek et al. | Bidirectional repeaterless transmission of 8× 10 GE over 210 km of standard single mode fibre | |
| Healy et al. | 1 b/s/Hz coherent WDM transmission over 112 km of dispersion managed optical fibre |