[go: up one dir, main page]

Kumar et al., 2015 - Google Patents

Fusion: Design tradeoffs in coherent cache hierarchies for accelerators

Kumar et al., 2015

View PDF
Document ID
8515970280107087326
Author
Kumar S
Shriraman A
Vedula N
Publication year
Publication venue
Proceedings of the 42Nd Annual International Symposium on Computer Architecture

External Links

Snippet

Chip designers have shown increasing interest in integrating specialized fixed-function coprocessors into multicore designs to improve energy efficiency. Recent work in academia [11, 37] and industry [16] has sought to enable more fine-grain offloading at the granularity of …
Continue reading at snehasish.net (PDF) (other versions)

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F12/00Accessing, addressing or allocating within memory systems or architectures
    • G06F12/02Addressing or allocation; Relocation
    • G06F12/08Addressing or allocation; Relocation in hierarchically structured memory systems, e.g. virtual memory systems
    • G06F12/0802Addressing of a memory level in which the access to the desired data or data block requires associative addressing means, e.g. caches
    • G06F12/0806Multiuser, multiprocessor or multiprocessing cache systems
    • G06F12/0815Cache consistency protocols
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F12/00Accessing, addressing or allocating within memory systems or architectures
    • G06F12/02Addressing or allocation; Relocation
    • G06F12/08Addressing or allocation; Relocation in hierarchically structured memory systems, e.g. virtual memory systems
    • G06F12/0802Addressing of a memory level in which the access to the desired data or data block requires associative addressing means, e.g. caches
    • G06F12/0806Multiuser, multiprocessor or multiprocessing cache systems
    • G06F12/0808Multiuser, multiprocessor or multiprocessing cache systems with cache invalidating means
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F12/00Accessing, addressing or allocating within memory systems or architectures
    • G06F12/02Addressing or allocation; Relocation
    • G06F12/08Addressing or allocation; Relocation in hierarchically structured memory systems, e.g. virtual memory systems
    • G06F12/0802Addressing of a memory level in which the access to the desired data or data block requires associative addressing means, e.g. caches
    • G06F12/0844Multiple simultaneous or quasi-simultaneous cache accessing
    • G06F12/0846Cache with multiple tag or data arrays being simultaneously accessible
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F12/00Accessing, addressing or allocating within memory systems or architectures
    • G06F12/02Addressing or allocation; Relocation
    • G06F12/08Addressing or allocation; Relocation in hierarchically structured memory systems, e.g. virtual memory systems
    • G06F12/0802Addressing of a memory level in which the access to the desired data or data block requires associative addressing means, e.g. caches
    • G06F12/0893Caches characterised by their organisation or structure
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/30Monitoring
    • G06F11/34Recording or statistical evaluation of computer activity, e.g. of down time, of input/output operation; Recording or statistical evaluation of user activity, e.g. usability assessment
    • G06F11/3466Performance evaluation by tracing or monitoring
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F1/00Details of data-processing equipment not covered by groups G06F3/00 - G06F13/00, e.g. cooling, packaging or power supply specially adapted for computer application
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/32Means for saving power
    • G06F1/3203Power Management, i.e. event-based initiation of power-saving mode
    • G06F1/3234Action, measure or step performed to reduce power consumption
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F15/00Digital computers in general; Data processing equipment in general
    • G06F15/16Combinations of two or more digital computers each having at least an arithmetic unit, a programme unit and a register, e.g. for a simultaneous processing of several programmes
    • G06F15/163Interprocessor communication
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for programme control, e.g. control unit
    • G06F9/06Arrangements for programme control, e.g. control unit using stored programme, i.e. using internal store of processing equipment to receive and retain programme
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F2212/00Indexing scheme relating to accessing, addressing or allocation within memory systems or architectures
    • G06F2212/25Using a specific main memory architecture
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/30Information retrieval; Database structures therefor; File system structures therefor
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F1/00Details of data-processing equipment not covered by groups G06F3/00 - G06F13/00, e.g. cooling, packaging or power supply specially adapted for computer application
    • G06F1/16Constructional details or arrangements
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F2201/00Indexing scheme relating to error detection, to error correction, and to monitoring
    • G06F2201/885Monitoring specific for caches
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F2212/00Indexing scheme relating to accessing, addressing or allocation within memory systems or architectures
    • G06F2212/10Providing a specific technical effect
    • G06F2212/1012Design facilitation

Similar Documents

Publication Publication Date Title
Kumar et al. Fusion: Design tradeoffs in coherent cache hierarchies for accelerators
Zhang et al. Victim replication: Maximizing capacity while hiding wire delay in tiled chip multiprocessors
Cantin et al. Improving multiprocessor performance with coarse-grain coherence tracking
Ramos et al. Modeling communication in cache-coherent SMP systems: a case-study with Xeon Phi
Zebchuk et al. A tagless coherence directory
Kim et al. Subspace snooping: Filtering snoops with operating system support
Volos et al. Bump: Bulk memory access prediction and streaming
Koukos et al. Building heterogeneous unified virtual memories (uvms) without the overhead
Cantin et al. Coarse-grain coherence tracking: RegionScout and region coherence arrays
Dublish et al. Cooperative caching for GPUs
Loghi et al. Cache coherence tradeoffs in shared-memory MPSoCs
Ros et al. DiCo-CMP: Efficient cache coherency in tiled CMP architectures
Park et al. Location-aware cache management for many-core processors with deep cache hierarchy
Aggarwal et al. Power-efficient DRAM speculation
Shim et al. Library cache coherence
Hossain et al. Improving support for locality and fine-grain sharing in chip multiprocessors
Shukla et al. Tiny directory: Efficient shared memory in many-core systems with ultra-low-overhead coherence tracking
Fensch et al. Designing a physical locality aware coherence protocol for chip-multiprocessors
Foglia et al. Exploiting replication to improve performances of NUCA-based CMP systems
Barredo et al. Planar: a programmable accelerator for near-memory data rearrangement
Vermij et al. An architecture for integrated near-data processors
Salapura et al. Improving the accuracy of snoop filtering using stream registers
Shi et al. LDAC: Locality-aware data access control for large-scale multicore cache hierarchies
Soltaniyeh et al. Classifying data blocks at subpage granularity with an on-chip page table to improve coherence in tiled cmps
Ros et al. Cache coherence protocols for many-core CMPs