Petrov et al., 2020 - Google Patents
Modelling of the laser amplification process with allowance for the effect of the temperature distribution in an Yb: YAG gain element on the thermophysical and lasing …Petrov et al., 2020
View PDF- Document ID
- 877440877577421029
- Author
- Petrov V
- Petrov V
- Kuptsov G
- Laptev A
- Kirpichnikov A
- Pestryakov E
- Publication year
- Publication venue
- Quantum Electronics
External Links
Snippet
A time-dependent three-dimensional model for the laser amplification process has been constructed with allowance for the effect of the temperature distribution on the thermophysical and lasing characteristics of gain media. We have performed numerical …
- 230000003321 amplification 0 title abstract description 18
Classifications
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S3/00—Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves
- H01S3/14—Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves characterised by the material used as the active medium
- H01S3/16—Solid materials
- H01S3/1601—Solid materials characterised by an active (lasing) ion
- H01S3/1603—Solid materials characterised by an active (lasing) ion rare earth
- H01S3/1618—Solid materials characterised by an active (lasing) ion rare earth ytterbium
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S3/00—Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves
- H01S3/09—Processes or apparatus for excitation, e.g. pumping
- H01S3/091—Processes or apparatus for excitation, e.g. pumping using optical pumping
- H01S3/094—Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
- H01S3/0941—Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a laser diode
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S3/00—Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves
- H01S3/14—Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves characterised by the material used as the active medium
- H01S3/16—Solid materials
- H01S3/1601—Solid materials characterised by an active (lasing) ion
- H01S3/1603—Solid materials characterised by an active (lasing) ion rare earth
- H01S3/1608—Solid materials characterised by an active (lasing) ion rare earth erbium
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S3/00—Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves
- H01S3/05—Construction or shape of optical resonators; Accomodation of active medium therein; Shape of active medium
- H01S3/06—Construction or shape of active medium
- H01S3/07—Construction or shape of active medium consisting of a plurality of parts, e.g. segments
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S3/00—Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves
- H01S3/05—Construction or shape of optical resonators; Accomodation of active medium therein; Shape of active medium
- H01S3/06—Construction or shape of active medium
- H01S3/0619—Coatings, e.g. AR, HR, passivation layer
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S3/00—Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves
- H01S3/05—Construction or shape of optical resonators; Accomodation of active medium therein; Shape of active medium
- H01S3/06—Construction or shape of active medium
- H01S3/0602—Crystal lasers or glass lasers
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S3/00—Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves
- H01S3/14—Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves characterised by the material used as the active medium
- H01S3/16—Solid materials
- H01S3/163—Solid materials characterised by a crystal matrix
- H01S3/164—Solid materials characterised by a crystal matrix garnet
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S3/00—Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves
- H01S3/02—Constructional details
- H01S3/04—Cooling arrangements
- H01S3/041—Cooling arrangements for gas lasers
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S3/00—Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves
- H01S3/05—Construction or shape of optical resonators; Accomodation of active medium therein; Shape of active medium
- H01S3/06—Construction or shape of active medium
- H01S3/063—Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
- H01S3/067—Fibre lasers
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S3/00—Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves
- H01S3/10—Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
- H01S3/106—Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling a device placed within the cavity
- H01S3/1063—Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling a device placed within the cavity using a solid state device provided with at least one potential jump barrier
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S3/00—Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves
- H01S3/14—Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves characterised by the material used as the active medium
- H01S3/22—Gases
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S3/00—Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves
- H01S3/10—Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
- H01S3/106—Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling a device placed within the cavity
- H01S3/108—Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling a device placed within the cavity using a non-linear optical device, e.g. exhibiting Brillouin- or Raman-scattering
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S3/00—Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves
- H01S3/05—Construction or shape of optical resonators; Accomodation of active medium therein; Shape of active medium
- H01S3/08—Construction or shape of optical resonators or components thereof
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S3/00—Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves
- H01S3/23—Arrangements of two or more lasers not provided for in groups H01S3/02 - H01S3/22, e.g. tandem arrangements of separate active media
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Petrov et al. | Modelling of the laser amplification process with allowance for the effect of the temperature distribution in an Yb: YAG gain element on the thermophysical and lasing characteristics of the medium | |
| Sawai et al. | Demonstration of a Ti: sapphire mode-locked laser pumped directly with a green diode laser | |
| Velikanov et al. | Investigation of Fe: ZnSe laser in pulsed and repetitively pulsed regimes | |
| Zhu et al. | Diode-pumped femtosecond mode-locked Nd, Y-codoped CaF2 laser | |
| Wang et al. | Highly stable self-pulsed operation of an Er: Lu2O3 ceramic laser at 2.7 µm | |
| Dashkevich et al. | Quasi-continuous wave and continuous wave laser operation of Eu: KGd (WO4) 2 crystal on a 5D0→ 7F4 transition | |
| Kuptsov et al. | Laser amplification in an Yb: YAG active mirror with a significant temperature gradient | |
| Mao et al. | Study of high power Tm: YLF Innoslab wavelength-selected laser | |
| Fu et al. | High-efficiency 2 J, 20 Hz diode-pumped Nd: YAG active-mirror master oscillator power amplifier system | |
| Petrov et al. | Multiterawatt femtosecond laser system with kilohertz pulse repetition rate | |
| Xu et al. | 125 W single-frequency CW Nd: YVO4 laser based on two-stage dual-end-pumped master-oscillator power amplifiers | |
| Zhao et al. | Improvement of 2.79-μm laser performance on laser diode side-pumped GYSGG/Er, Pr: GYSGG bonding rod with concave end-faces | |
| Zhang et al. | Efficient continuous-wave and 739 fs mode-locked laser on a novel Nd3+, La3+ co-doped SrF2 disordered crystal | |
| Li et al. | Study of an acousto-optic Q-switched double pulse output Pr: YLF all solid-state laser | |
| Perevezentsev et al. | Cryogenic disk Yb: YAG laser with 120-mJ energy at 500-Hz pulse repetition rate | |
| Mao et al. | 315 W, 1.94 μm, Tm: YAP InnoSlab laser | |
| Zhu et al. | Simultaneous red, green and blue laser operations in a Pr3+: LiYF4 crystal | |
| Huang et al. | Near-diffraction-limited diode end-pumped 2 µm Tm: YAG Innoslab laser | |
| He-Dong et al. | An intra-cavity pumped dual-wavelength laser operating at 946 nm and 1064 nm with Nd: YAG+ Nd: YVO4 crystals | |
| Quan et al. | Performance of a 968-nm laser-diode side-pumped, electro-optical Q-switched Er, Pr: YAP laser with emission at 2.7 μ m | |
| Lan et al. | New continuous-wave and Q-switched eye-safe Nd: YAG lasers at 1.4 μm spectral region | |
| Fibrich et al. | Influence of temperature on Ti: sapphire spectroscopic and laser characteristics | |
| Huang et al. | A highly stable laser diode pumped cryogenic Yb: YAG nanosecond regenerative amplifier | |
| Němec et al. | Temperature influence on Er: YAlO3 spectroscopy and diode-pumped laser properties | |
| Liu et al. | The 5.2 kW Nd: YAG slab amplifier chain seeded by Nd: YVO4 innoslab laser |