[go: up one dir, main page]

Hoppner et al., 2012 - Google Patents

A compact clock generator for heterogeneous GALS MPSoCs in 65-nm CMOS technology

Hoppner et al., 2012

Document ID
8833740059815468756
Author
Hoppner S
Eisenreich H
Henker S
Walter D
Ellguth G
Schuffny R
Publication year
Publication venue
IEEE Transactions on Very Large Scale Integration (VLSI) Systems

External Links

Snippet

This paper presents an all-digital phase-locked loop (ADPLL) clock generator for globally asynchronous locally synchronous (GALS) multiprocessor systems-on-chip (MPSoCs). With its low power consumption of 2.7 mW and ultra small chip area of 0.0078 mm 2 it can be …
Continue reading at ieeexplore.ieee.org (other versions)

Classifications

    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION, OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/08Details of the phase-locked loop
    • H03L7/099Details of the phase-locked loop concerning mainly the controlled oscillator of the loop
    • H03L7/0995Details of the phase-locked loop concerning mainly the controlled oscillator of the loop the oscillator comprising a ring oscillator
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION, OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/08Details of the phase-locked loop
    • H03L7/081Details of the phase-locked loop provided with an additional controlled phase shifter
    • H03L7/0812Details of the phase-locked loop provided with an additional controlled phase shifter and where no voltage or current controlled oscillator is used
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION, OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/08Details of the phase-locked loop
    • H03L7/085Details of the phase-locked loop concerning mainly the frequency- or phase-detection arrangement including the filtering or amplification of its output signal
    • H03L7/087Details of the phase-locked loop concerning mainly the frequency- or phase-detection arrangement including the filtering or amplification of its output signal using at least two phase detectors or a frequency and phase detector in the loop
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION, OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/08Details of the phase-locked loop
    • H03L7/085Details of the phase-locked loop concerning mainly the frequency- or phase-detection arrangement including the filtering or amplification of its output signal
    • H03L7/089Details of the phase-locked loop concerning mainly the frequency- or phase-detection arrangement including the filtering or amplification of its output signal the phase or frequency detector generating up-down pulses
    • H03L7/0891Details of the phase-locked loop concerning mainly the frequency- or phase-detection arrangement including the filtering or amplification of its output signal the phase or frequency detector generating up-down pulses the up-down pulses controlling source and sink current generators, e.g. a charge pump
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION, OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/16Indirect frequency synthesis, i.e. generating a desired one of a number of predetermined frequencies using a frequency- or phase-locked loop
    • H03L7/18Indirect frequency synthesis, i.e. generating a desired one of a number of predetermined frequencies using a frequency- or phase-locked loop using a frequency divider or counter in the loop
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K3/00Circuits for generating electric pulses; Monostable, bistable or multistable circuits
    • H03K3/02Generators characterised by the type of circuit or by the means used for producing pulses
    • H03K3/027Generators characterised by the type of circuit or by the means used for producing pulses by the use of logic circuits, with internal or external positive feedback
    • H03K3/03Astable circuits
    • H03K3/0315Ring oscillators
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K3/00Circuits for generating electric pulses; Monostable, bistable or multistable circuits
    • H03K3/02Generators characterised by the type of circuit or by the means used for producing pulses
    • H03K3/027Generators characterised by the type of circuit or by the means used for producing pulses by the use of logic circuits, with internal or external positive feedback
    • H03K3/037Bistable circuits
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K3/00Circuits for generating electric pulses; Monostable, bistable or multistable circuits
    • H03K3/01Details
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K5/00Manipulating pulses not covered by one of the other main groups in this subclass
    • H03K5/15Arrangements in which pulses are delivered at different times at several outputs, i.e. pulse distributors
    • H03K5/15013Arrangements in which pulses are delivered at different times at several outputs, i.e. pulse distributors with more than two outputs
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K23/00Pulse counters comprising counting chains; Frequency dividers comprising counting chains
    • H03K23/40Gating or clocking signals applied to all stages, i.e. synchronous counters
    • H03K23/50Gating or clocking signals applied to all stages, i.e. synchronous counters using bi-stable regenerative trigger circuits
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B19/00Generation of oscillations by non-regenerative frequency multiplication or division of a signal from a separate source
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K23/00Pulse counters comprising counting chains; Frequency dividers comprising counting chains
    • H03K23/64Pulse counters comprising counting chains; Frequency dividers comprising counting chains with a base or radix other than a power of two
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B5/00Generation of oscillations using amplifier with regenerative feedback from output to input

Similar Documents

Publication Publication Date Title
Hoppner et al. A compact clock generator for heterogeneous GALS MPSoCs in 65-nm CMOS technology
Elkholy et al. Low-jitter multi-output all-digital clock generator using DTC-based open loop fractional dividers
Kim et al. A 2.4-GHz 1.5-mW digital multiplying delay-locked loop using pulsewidth comparator and double injection technique
Zhang et al. A multiphase DLL with a novel fast-locking fine-code time-to-digital converter
KR102674652B1 (en) Phase correction using half-rate clock for injection-locked oscillators
Kim et al. A fast-locking all-digital multiplying DLL for fractional-ratio dynamic frequency scaling
Song et al. A 2.4 GHz 0.1-fref-bandwidth all-digital phase-locked loop with delay-cell-less TDC
Moore et al. A 0.009 mm 2 wide-tuning range automatically placed-and-routed ADPLL in 14-nm FinFET CMOS
Kim et al. A hybrid PLL using low-power GRO-TDC for reduced in-band phase noise
Park et al. A sub-100 fs-jitter 8.16-GHz ring-oscillator-based power-gating injection-locked clock multiplier with the multiplication factor of 68
Chen et al. A 12–14.5-GHz 10.2-mW− 249-dB FoM fractional-N subsampling PLL with a high-linearity phase interpolator in 40-nm CMOS
Chen et al. A 21.8–41.6-GHz low jitter and high FoMj fast-locking subsampling PLL with dead zone automatic controller
Jung et al. All-digital process-variation-calibrated timing generator for ATE with 1.95-ps resolution and maximum 1.2-GHz test rate
Yoon et al. A low-jitter injection-locked multi-frequency generator using digitally controlled oscillators and time-interleaved calibration
Kasilingam et al. Design of a high‐performance advanced phase locked loop with high stability external loop filter
Wang et al. An all-digital delay-locked loop using an in-time phase maintenance scheme for low-jitter gigahertz operations
Sharkia et al. A Serrodyne Modulator-Based Fractional Frequency Synthesis Technique for Low-Noise, GHz-Rate Clocking
Xu A fractional-N synthesizable PLL using DTC-based multistage injection with dithering-assisted local skew calibration
Zhang et al. A fast-locking digital DLL with a high resolution time-to-digital converter
Park et al. A low-jitter 2.4 GHz all-digital MDLL with a dithering jitter reduction scheme for 256 times frequency multiplication
Kim et al. All-digital phased-locked loop with local passive interpolation time-to-digital converter based on a tristate inverter
Wang et al. Delay-locked loop based frequency quadrupler with wide operating range and fast locking characteristics
Lin et al. A Synchronous 50% Duty-Cycle Clock Generator in 0.35-$\mu $ m CMOS
JP7482745B2 (en) Oscillator Circuit
Chang et al. A 65 nm 0.08-to-680 MHz low-power synthesizable MDLL with nested-delay cell and background static phase offset calibration