[go: up one dir, main page]

Yun et al., 2016 - Google Patents

Efficient representative pattern mining based on weight and maximality conditions

Yun et al., 2016

Document ID
9142270211669558855
Author
Yun U
Lee G
Lee K
Publication year
Publication venue
Expert Systems

External Links

Snippet

As a core area in data mining, frequent pattern (or itemset) mining has been studied for a long time. Weighted frequent pattern mining prunes unimportant patterns and maximal frequent pattern mining discovers compact frequent patterns. These approaches contribute …
Continue reading at onlinelibrary.wiley.com (other versions)

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/30Information retrieval; Database structures therefor; File system structures therefor
    • G06F17/30286Information retrieval; Database structures therefor; File system structures therefor in structured data stores
    • G06F17/30312Storage and indexing structures; Management thereof
    • G06F17/30321Indexing structures
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/30Information retrieval; Database structures therefor; File system structures therefor
    • G06F17/30286Information retrieval; Database structures therefor; File system structures therefor in structured data stores
    • G06F17/30587Details of specialised database models
    • G06F17/30595Relational databases
    • G06F17/30598Clustering or classification
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/30Information retrieval; Database structures therefor; File system structures therefor
    • G06F17/30286Information retrieval; Database structures therefor; File system structures therefor in structured data stores
    • G06F17/30386Retrieval requests
    • G06F17/30424Query processing
    • G06F17/30533Other types of queries
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/30Information retrieval; Database structures therefor; File system structures therefor
    • G06F17/3061Information retrieval; Database structures therefor; File system structures therefor of unstructured textual data
    • G06F17/30705Clustering or classification
    • G06F17/3071Clustering or classification including class or cluster creation or modification
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/30Information retrieval; Database structures therefor; File system structures therefor
    • G06F17/30861Retrieval from the Internet, e.g. browsers
    • G06F17/30864Retrieval from the Internet, e.g. browsers by querying, e.g. search engines or meta-search engines, crawling techniques, push systems
    • G06F17/30867Retrieval from the Internet, e.g. browsers by querying, e.g. search engines or meta-search engines, crawling techniques, push systems with filtering and personalisation
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/30Information retrieval; Database structures therefor; File system structures therefor
    • G06F17/30943Information retrieval; Database structures therefor; File system structures therefor details of database functions independent of the retrieved data type
    • G06F17/30946Information retrieval; Database structures therefor; File system structures therefor details of database functions independent of the retrieved data type indexing structures
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/20Handling natural language data
    • G06F17/21Text processing
    • G06F17/22Manipulating or registering by use of codes, e.g. in sequence of text characters
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06QDATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q30/00Commerce, e.g. shopping or e-commerce
    • G06Q30/02Marketing, e.g. market research and analysis, surveying, promotions, advertising, buyer profiling, customer management or rewards; Price estimation or determination
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06NCOMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N99/00Subject matter not provided for in other groups of this subclass
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06QDATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management

Similar Documents

Publication Publication Date Title
Yun et al. Mining maximal frequent patterns by considering weight conditions over data streams
Berlingerio et al. Abacus: frequent pattern mining-based community discovery in multidimensional networks
Badanidiyuru et al. Streaming submodular maximization: Massive data summarization on the fly
Yun et al. Efficient representative pattern mining based on weight and maximality conditions
Ranshous et al. Anomaly detection in dynamic networks: a survey
Harenberg et al. Community detection in large‐scale networks: a survey and empirical evaluation
US7945668B1 (en) System and method for content-aware co-clustering algorithm based on hourglass model
Pyun et al. Mining top-k frequent patterns with combination reducing techniques
Yun et al. An efficient mining algorithm for maximal weighted frequent patterns in transactional databases
Dam et al. An efficient algorithm for mining top-k on-shelf high utility itemsets
Yun et al. Efficient mining of maximal correlated weight frequent patterns
Shenoy et al. Dynamic association rule mining using genetic algorithms
Huang et al. Clustering on heterogeneous networks
Lee et al. Approximate maximal frequent pattern mining with weight conditions and error tolerance
Mohamed et al. Efficient mining frequent itemsets algorithms
Alam et al. Discovering interesting patterns from hypergraphs
Cai et al. A triangular personalized recommendation algorithm for improving diversity
Islam et al. Discovering probabilistically weighted sequential patterns in uncertain databases
Zhou et al. Connecting patterns inspire link prediction in complex networks
Chae et al. Incremental feature selection for efficient classification of dynamic graph bags
Wang et al. Subspace k-anonymity algorithm for location-privacy preservation based on locality-sensitive hashing
Elbattah et al. Large-Scale Entity Clustering Based on Structural Similarities within Knowledge Graphs
Zhang et al. A bounded-size clustering algorithm on fully-dynamic streaming graphs
Abulaish et al. Scaling density-based community detection to large-scale social networks via MapReduce framework
Vu et al. Efficient algorithms for mining frequent patterns from sparse and dense databases