Sang et al., 2002 - Google Patents
A predictability analysis of network trafficSang et al., 2002
View PDF- Document ID
- 9312803796587256565
- Author
- Sang A
- Li S
- Publication year
- Publication venue
- Computer networks
External Links
Snippet
This paper assesses the predictability of network traffic by considering two metrics:(1) how far into the future a traffic rate process can be predicted with bounded error;(2) what the minimum prediction error is over a specified prediction time interval. The assessment is …
- 238000004458 analytical method 0 title description 26
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L41/00—Arrangements for maintenance or administration or management of packet switching networks
- H04L41/50—Network service management, i.e. ensuring proper service fulfillment according to an agreement or contract between two parties, e.g. between an IT-provider and a customer
- H04L41/5003—Managing service level agreement [SLA] or interaction between SLA and quality of service [QoS]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L12/00—Data switching networks
- H04L12/54—Store-and-forward switching systems
- H04L12/56—Packet switching systems
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L41/00—Arrangements for maintenance or administration or management of packet switching networks
- H04L41/14—Arrangements for maintenance or administration or management of packet switching networks involving network analysis or design, e.g. simulation, network model or planning
- H04L41/145—Arrangements for maintenance or administration or management of packet switching networks involving network analysis or design, e.g. simulation, network model or planning involving simulating, designing, planning or modelling of a network
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L41/00—Arrangements for maintenance or administration or management of packet switching networks
- H04L41/14—Arrangements for maintenance or administration or management of packet switching networks involving network analysis or design, e.g. simulation, network model or planning
- H04L41/142—Arrangements for maintenance or administration or management of packet switching networks involving network analysis or design, e.g. simulation, network model or planning using statistical or mathematical methods
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L41/00—Arrangements for maintenance or administration or management of packet switching networks
- H04L41/14—Arrangements for maintenance or administration or management of packet switching networks involving network analysis or design, e.g. simulation, network model or planning
- H04L41/147—Arrangements for maintenance or administration or management of packet switching networks involving network analysis or design, e.g. simulation, network model or planning for prediction of network behaviour
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L43/00—Arrangements for monitoring or testing packet switching networks
- H04L43/08—Monitoring based on specific metrics
- H04L43/0876—Network utilization
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L41/00—Arrangements for maintenance or administration or management of packet switching networks
- H04L41/50—Network service management, i.e. ensuring proper service fulfillment according to an agreement or contract between two parties, e.g. between an IT-provider and a customer
- H04L41/5019—Ensuring SLA
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L12/00—Data switching networks
- H04L12/02—Details
- H04L12/26—Monitoring arrangements; Testing arrangements
- H04L12/2602—Monitoring arrangements
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L43/00—Arrangements for monitoring or testing packet switching networks
- H04L43/08—Monitoring based on specific metrics
- H04L43/0852—Delays
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L41/00—Arrangements for maintenance or administration or management of packet switching networks
- H04L41/02—Arrangements for maintenance or administration or management of packet switching networks involving integration or standardization
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L41/00—Arrangements for maintenance or administration or management of packet switching networks
- H04L41/16—Network management using artificial intelligence
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L47/00—Traffic regulation in packet switching networks
- H04L47/70—Admission control or resource allocation
- H04L47/82—Miscellaneous aspects
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L41/00—Arrangements for maintenance or administration or management of packet switching networks
- H04L41/04—Architectural aspects of network management arrangements
- H04L41/046—Aspects of network management agents
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L41/00—Arrangements for maintenance or administration or management of packet switching networks
- H04L41/22—Arrangements for maintenance or administration or management of packet switching networks using GUI [Graphical User Interface]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L47/00—Traffic regulation in packet switching networks
- H04L47/10—Flow control or congestion control
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L67/00—Network-specific arrangements or communication protocols supporting networked applications
- H04L67/32—Network-specific arrangements or communication protocols supporting networked applications for scheduling or organising the servicing of application requests, e.g. requests for application data transmissions involving the analysis and optimisation of the required network resources
- H04L67/322—Network-specific arrangements or communication protocols supporting networked applications for scheduling or organising the servicing of application requests, e.g. requests for application data transmissions involving the analysis and optimisation of the required network resources whereby quality of service [QoS] or priority requirements are taken into account
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Sang et al. | A predictability analysis of network traffic | |
| Hohn et al. | Inverting sampled traffic | |
| Ostring et al. | The influence of long-range dependence on traffic prediction | |
| Owezarski et al. | Internet traffic characterization–An analysis of traffic oscillations | |
| Aït-Salaht et al. | Stochastic bounds and histograms for network performance analysis | |
| Garroppo et al. | On traffic prediction for resource allocation: A Chebyshev bound based allocation scheme | |
| Jeong | Modelling of self-similar teletraffic for simulation | |
| Mandjes et al. | Resource dimensioning through buffer sampling | |
| EP1842332B1 (en) | A method and apparatus for calculating bandwidth requirements | |
| Li et al. | mBm‐Based Scalings of Traffic Propagated in Internet | |
| Davy et al. | Revenue optimized IPTV admission control using empirical effective bandwidth estimation | |
| Bashar et al. | Machine learning based call admission control approaches: A comparative study | |
| Shukla et al. | Least square based curve fitting in internet access traffic sharing in two operator environment | |
| Shen et al. | WGM: wavelet-based gamma model for video traffic in wireless multi-hop networks | |
| Abendroth et al. | Intelligent shaping: well shaped throughout the entire network? | |
| Elbiaze et al. | A new structure-preserving method of sampling for predicting self-similar traffic | |
| Rusek et al. | Transient and stationary characteristics of a packet buffer modelled as an MAP/SM/1/b system | |
| Mao | A real-time loss performance monitoring scheme | |
| Kulikovs et al. | Real-time traffic analyzer for measurement-based admission control | |
| Chávez et al. | Generation of LRD traffic traces with given sample statistics | |
| Bashar | ML-based Admission Control of Cloud Services: Centralized versus Distributed Approaches | |
| Feng | Satisfying end-to-end quality of service requirements with end-to-end performance inference technique | |
| Mendes et al. | Impact of Traffic Sampling on LRD Estimation | |
| Keseev¹ et al. | Systems of SDN | |
| Kim et al. | Experiment and analysis for QoS of e-Commerce systems |