[go: up one dir, main page]

Feng et al., 2001 - Google Patents

Electrochemical behaviour of intermetallic-based metal hydrides used in Ni/metal hydride (MH) batteries: a review

Feng et al., 2001

View PDF
Document ID
9444058438773817584
Author
Feng F
Geng M
Northwood D
Publication year
Publication venue
International Journal of Hydrogen Energy

External Links

Snippet

Hydrogen storage alloys are a group of new functional intermetallics which can be used in heat pumps, catalysts, hydrogen sensors and Ni/MH batteries. The development of Ni/MH (Metal Hydride) batteries based on MH negative electrodes has seen considerable activity in …
Continue reading at www.academia.edu (PDF) (other versions)

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage
    • Y02E60/12Battery technology
    • Y02E60/124Alkaline secondary batteries, e.g. NiCd or NiMH
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage
    • Y02E60/324Reversible uptake of hydrogen by an appropriate medium
    • Y02E60/327Reversible uptake of hydrogen by an appropriate medium the medium being a metal or rare earth metal, an intermetallic compound or a metal alloy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage
    • Y02E60/12Battery technology
    • Y02E60/122Lithium-ion batteries
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of or comprising active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/383Hydrogen absorbing alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/50Fuel cells
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of or comprising active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/242Hydrogen storage electrodes
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of or comprising active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of or comprising active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9075Catalytic material supported on carriers, e.g. powder carriers
    • H01M4/9083Catalytic material supported on carriers, e.g. powder carriers on carbon or graphite
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/34Gastight accumulators
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04201Reactant storage and supply, e.g. means for feeding, pipes
    • H01M8/04216Reactant storage and supply, e.g. means for feeding, pipes characterised by the choice for a specific material, e.g. carbon, hydride, absorbent
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues

Similar Documents

Publication Publication Date Title
Feng et al. Electrochemical behaviour of intermetallic-based metal hydrides used in Ni/metal hydride (MH) batteries: a review
Zhao et al. Recent progress in hydrogen storage alloys for nickel/metal hydride secondary batteries
Tsukahara et al. Metal hydride electrodes based on solid solution type alloy TiV3Nix (0≦ x≦ 0.75)
Zhang et al. Effect of annealing treatment on structure and electrochemical properties of La0. 67Mg0. 33Ni2. 5Co0. 5 alloy electrodes
US20070077491A1 (en) Electrode, method of its production, metal-air fuel cell and metal hydride cell
Shuqin et al. Influences of molybdenum substitution for cobalt on the phase structure and electrochemical kinetic properties of AB5-type hydrogen storage alloys
Cui et al. Effects of yttrium additions on the electrode performance of magnesium-based hydrogen storage alloys
Meli et al. Surface and bulk properties of LaNi5− χSiχ alloys from the viewpoint of battery applications
Arya et al. Nickel‐metal hydride (Ni‐MH) batteries
Iwakura et al. Effect of temperature on electrochemical characteristics of Mg2Ni alloy
Kazakov et al. Hydrogen storage and electrochemical properties of annealed low-Co AB5 type intermetallic compounds
Cui et al. Nickel–metal hydride (Ni–MH) battery using Mg2Ni-type hydrogen storage alloy
Lota et al. Electrochemical properties of modified negative electrode for Ni-MH cell
Mu et al. Degradation kinetics of discharge capacity for amorphous Mg–Ni electrode
Li et al. In situ grown Co3O4 on hydrogen storage alloys for enhanced electrochemical performance
Zhang et al. Effect of La/Ce ratio on the structure and electrochemical characteristics of La0. 7− xCexMg0. 3Ni2. 8Co0. 5 (x= 0.1–0.5) hydrogen storage alloys
Young et al. Effects of H2O2 addition to the cell balance and self-discharge of Ni/MH batteries with AB5 and A2B7 alloys
Geng et al. Charging/discharging stability of a metal hydride battery electrode
Moussa et al. Electrochemical properties of the MmNi3. 55Mn0. 4Al0. 3Co0. 75− xFex (x= 0.55 and 0.75) compounds
Senoh et al. Relationship between equilibrium hydrogen pressure and exchange current for the hydrogen electrode reaction at MmNi3. 9− xMn0. 4AlxCo0. 7 alloy electrodes
Tang et al. Effect of Al substitution for Co on the hydrogen storage characteristics of Ml0. 8Mg0. 2Ni3. 2Co0. 6− xAlx (x= 0–0.6) alloys
Geng et al. Hydrogen-absorbing alloys for the NICKEL–METAL hydride battery
Chen et al. Studies on the diffusion coefficient of hydrogen through metal hydride electrodes
Wang et al. Electrochemical hydrogen storage properties of the ball-milled PrMg12− xNix+ 150 wt% Ni (x= 1 and 2) composites
Liu et al. Influence of LiH addition on electrochemical hydrogen storage performance of Ti45Zr38Ni17 quasicrystal