Lotfi-Kamran et al., 2008 - Google Patents
Stall power reduction in pipelined architecture processorsLotfi-Kamran et al., 2008
View PDF- Document ID
- 9681141943609861459
- Author
- Lotfi-Kamran P
- Rahmani A
- Salehpour A
- Afzali-Kusha A
- Navabi Z
- Publication year
- Publication venue
- 21st International Conference on VLSI Design (VLSID 2008)
External Links
Snippet
This paper proposes a technique for dynamic power reduction of pipelined processors. Pipelined processors frequently insert NOP instruction to the pipe for generating delay or resolving dependency. Our study shows that the percentage of power consumed by NOP …
- 238000000034 method 0 abstract description 21
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for programme control, e.g. control unit
- G06F9/06—Arrangements for programme control, e.g. control unit using stored programme, i.e. using internal store of processing equipment to receive and retain programme
- G06F9/30—Arrangements for executing machine-instructions, e.g. instruction decode
- G06F9/38—Concurrent instruction execution, e.g. pipeline, look ahead
- G06F9/3867—Concurrent instruction execution, e.g. pipeline, look ahead using instruction pipelines
- G06F9/3869—Implementation aspects, e.g. pipeline latches; pipeline synchronisation and clocking
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F1/00—Details of data-processing equipment not covered by groups G06F3/00 - G06F13/00, e.g. cooling, packaging or power supply specially adapted for computer application
- G06F1/26—Power supply means, e.g. regulation thereof
- G06F1/32—Means for saving power
- G06F1/3203—Power Management, i.e. event-based initiation of power-saving mode
- G06F1/3234—Action, measure or step performed to reduce power consumption
- G06F1/3237—Power saving by disabling clock generation or distribution
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for programme control, e.g. control unit
- G06F9/06—Arrangements for programme control, e.g. control unit using stored programme, i.e. using internal store of processing equipment to receive and retain programme
- G06F9/30—Arrangements for executing machine-instructions, e.g. instruction decode
- G06F9/38—Concurrent instruction execution, e.g. pipeline, look ahead
- G06F9/3836—Instruction issuing, e.g. dynamic instruction scheduling, out of order instruction execution
- G06F9/3842—Speculative instruction execution
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for programme control, e.g. control unit
- G06F9/06—Arrangements for programme control, e.g. control unit using stored programme, i.e. using internal store of processing equipment to receive and retain programme
- G06F9/30—Arrangements for executing machine-instructions, e.g. instruction decode
- G06F9/38—Concurrent instruction execution, e.g. pipeline, look ahead
- G06F9/3824—Operand accessing
- G06F9/383—Operand prefetching
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for programme control, e.g. control unit
- G06F9/06—Arrangements for programme control, e.g. control unit using stored programme, i.e. using internal store of processing equipment to receive and retain programme
- G06F9/30—Arrangements for executing machine-instructions, e.g. instruction decode
- G06F9/38—Concurrent instruction execution, e.g. pipeline, look ahead
- G06F9/3867—Concurrent instruction execution, e.g. pipeline, look ahead using instruction pipelines
- G06F9/3873—Variable length pipelines, e.g. elastic pipeline
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for programme control, e.g. control unit
- G06F9/06—Arrangements for programme control, e.g. control unit using stored programme, i.e. using internal store of processing equipment to receive and retain programme
- G06F9/30—Arrangements for executing machine-instructions, e.g. instruction decode
- G06F9/38—Concurrent instruction execution, e.g. pipeline, look ahead
- G06F9/3885—Concurrent instruction execution, e.g. pipeline, look ahead using a plurality of independent parallel functional units
- G06F9/3889—Concurrent instruction execution, e.g. pipeline, look ahead using a plurality of independent parallel functional units controlled by multiple instructions, e.g. MIMD, decoupled access or execute
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F1/00—Details of data-processing equipment not covered by groups G06F3/00 - G06F13/00, e.g. cooling, packaging or power supply specially adapted for computer application
- G06F1/26—Power supply means, e.g. regulation thereof
- G06F1/32—Means for saving power
- G06F1/3203—Power Management, i.e. event-based initiation of power-saving mode
- G06F1/3234—Action, measure or step performed to reduce power consumption
- G06F1/3287—Power saving by switching off individual functional units in a computer system, i.e. selective power distribution
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for programme control, e.g. control unit
- G06F9/06—Arrangements for programme control, e.g. control unit using stored programme, i.e. using internal store of processing equipment to receive and retain programme
- G06F9/30—Arrangements for executing machine-instructions, e.g. instruction decode
- G06F9/38—Concurrent instruction execution, e.g. pipeline, look ahead
- G06F9/3802—Instruction prefetching
- G06F9/3808—Instruction prefetching for instruction reuse, e.g. trace cache, branch target cache
- G06F9/381—Loop buffering
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for programme control, e.g. control unit
- G06F9/06—Arrangements for programme control, e.g. control unit using stored programme, i.e. using internal store of processing equipment to receive and retain programme
- G06F9/30—Arrangements for executing machine-instructions, e.g. instruction decode
- G06F9/30003—Arrangements for executing specific machine instructions
- G06F9/30007—Arrangements for executing specific machine instructions to perform operations on data operands
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for programme control, e.g. control unit
- G06F9/06—Arrangements for programme control, e.g. control unit using stored programme, i.e. using internal store of processing equipment to receive and retain programme
- G06F9/30—Arrangements for executing machine-instructions, e.g. instruction decode
- G06F9/3017—Runtime instruction translation, e.g. macros
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for programme control, e.g. control unit
- G06F9/06—Arrangements for programme control, e.g. control unit using stored programme, i.e. using internal store of processing equipment to receive and retain programme
- G06F9/30—Arrangements for executing machine-instructions, e.g. instruction decode
- G06F9/32—Address formation of the next instruction, e.g. incrementing the instruction counter, jump
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F8/00—Arrangements for software engineering
- G06F8/40—Transformations of program code
- G06F8/41—Compilation
- G06F8/44—Encoding
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/50—Computer-aided design
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F7/00—Methods or arrangements for processing data by operating upon the order or content of the data handled
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US6289465B1 (en) | System and method for power optimization in parallel units | |
| Gochman et al. | The Intel® Pentium® M Processor: Microarchitecture and Performance. | |
| Ham et al. | DeSC: Decoupled supply-compute communication management for heterogeneous architectures | |
| Marculescu | On the use of microarchitecture-driven dynamic voltage scaling | |
| De Kruijf et al. | Idempotent processor architecture | |
| Loh | Exploiting data-width locality to increase superscalar execution bandwidth | |
| CN1478229A (en) | Processor latency | |
| Park et al. | Bypass aware instruction scheduling for register file power reduction | |
| Marculescu | Profile-driven code execution for low power dissipation | |
| Seki et al. | A fine-grain dynamic sleep control scheme in MIPS R3000 | |
| Subramanyan et al. | Multiplexed redundant execution: A technique for efficient fault tolerance in chip multiprocessors | |
| Lotfi-Kamran et al. | Stall power reduction in pipelined architecture processors | |
| Sami et al. | Low-power data forwarding for VLIW embedded architectures | |
| Sami et al. | Exploiting data forwarding to reduce the power budget of VLIW embedded processors | |
| Bose et al. | Early-stage definition of LPX: A low power issue-execute processor | |
| Goel et al. | Power reduction in VLIW processor with compiler driven bypass network | |
| Sami et al. | Power exploration for embedded VLIW architectures | |
| Lotfi-Kamran et al. | Dynamic Power Reduction of Stalls in Pipelined Architecture Processors. | |
| Lee et al. | Power-aware code scheduling assisted with power gating and DVS | |
| Glossner et al. | Sandblaster low power DSP [parallel DSP arithmetic microarchitecture] | |
| Kaur et al. | Pipelined MIPS with improved datapath | |
| Unsal et al. | Cool-fetch: A compiler-enabled IPC estimation based framework for energy reduction | |
| Shi et al. | DSS: Applying asynchronous techniques to architectures exploiting ILP at compile time | |
| MULTANEN | Hardware optimizations for low-power processors | |
| Mohyuddin et al. | Deterministic clock gating to eliminate wasteful activity due to wrong-path instructions in out-of-order superscalar processors |