[go: up one dir, main page]

Wu et al., 2021 - Google Patents

A novel multichannel inductive wear debris sensor based on time division multiplexing

Wu et al., 2021

Document ID
10087681376809344971
Author
Wu S
Liu Z
Yu K
Fan Z
Yuan Z
Sui Z
Yin Y
Pan X
Publication year
Publication venue
IEEE Sensors Journal

External Links

Snippet

Inductive wear debris sensor has been proved to be an effective device for lubricant oil condition monitoring and fault diagnosis. However, the narrow internal diameter of current sensing coil, designed for high sensitivity, limits the oil throughput. To improve the …
Continue reading at ieeexplore.ieee.org (other versions)

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through the meter in a continuous flow
    • G01F1/56Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through the meter in a continuous flow by using electric or magnetic effects
    • G01F1/58Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through the meter in a continuous flow by using electric or magnetic effects by electro-magnetic flowmeters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through the meter in a continuous flow
    • G01F1/704Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through the meter in a continuous flow using marked regions or existing inhomogeneities within the fluid stream, e.g. statistically occurring variations in a fluid parameter
    • G01F1/708Measuring the time taken to traverse a fixed distance
    • G01F1/716Measuring the time taken to traverse a fixed distance using electron paramagnetic resonance [EPR] or nuclear magnetic resonance [NMR]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/4806Functional imaging of brain activation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by the preceding groups
    • G01N33/26Investigating or analysing materials by specific methods not covered by the preceding groups oils; viscous liquids; paints; inks
    • G01N33/28Oils, i.e. hydrocarbon liquids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electro-chemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electro-chemical, or magnetic means by investigating magnetic variables
    • G01N27/82Investigating or analysing materials by the use of electric, electro-chemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws
    • G01N27/83Investigating or analysing materials by the use of electric, electro-chemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws by investigating stray magnetic fields
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through the meter in a continuous flow
    • G01F1/74Devices for measuring flow of a fluid or flow of a fluent solid material in suspension in another fluid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N24/00Investigating or analyzing materials by the use of nuclear magnetic resonance, electron paramagnetic resonance or other spin effects
    • G01N24/08Investigating or analyzing materials by the use of nuclear magnetic resonance, electron paramagnetic resonance or other spin effects by using nuclear magnetic resonance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through the meter in a continuous flow
    • G01F1/05Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through the meter in a continuous flow by using mechanical effects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/20Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature

Similar Documents

Publication Publication Date Title
Wu et al. A novel multichannel inductive wear debris sensor based on time division multiplexing
Feng et al. An inductive debris sensor based on a high-gradient magnetic field
Ren et al. Inductive debris sensor using one energizing coil with multiple sensing coils for sensitivity improvement and high throughput
US7956601B2 (en) Device and process for detecting particles in a flowing liquid
US5444367A (en) Method and apparatus for detecting particles in a fluid having coils isolated from external vibrations
EP0416866B1 (en) Electromagnetic flowmeter utilizing magnetic fields of a plurality of frequencies
Shi et al. An impedance debris sensor based on a high-gradient magnetic field for high sensitivity and high throughput
Ren et al. A highly sensitive triple-coil inductive debris sensor based on an effective unbalance compensation circuit
EP3132248B1 (en) Particle counter and classification system
Qian et al. Ultrasensitive inductive debris sensor with a two-stage autoasymmetrical compensation circuit
Feng et al. A ferromagnetic wear particle sensor based on a rotational symmetry high-gradient magnetostatic field
Li et al. Online symmetric magnetic excitation monitoring sensor for metal wear debris
CN108051348A (en) A kind of detecting system and method for fluid non-metallic particle concentration
Yang et al. Wear debris measurement in lubricating oil based on inductive method: A review
Ding et al. An online debris sensor system with vibration resistance for lubrication analysis
US10816450B2 (en) Particle counter and classification system
US9797851B2 (en) Integrated ultrasonic-inductive pulse sensor for wear debris detection
Shi et al. Capacitive–inductive magnetic plug sensor with high adaptability for online debris monitoring
Xie et al. A bridge-type inductance sensor with a two-stage filter circuit for high-precision detection of metal debris in the oil
Wang et al. Characteristics and superposition regularity of aliasing signal of an inductive debris sensor based on a high-gradient magnetic field
Feng et al. Sensing model for detecting ferromagnetic debris based on a high-gradient magnetostatic field
JP2006300942A (en) Method of controlling measuring device
Qian et al. Wear debris sensor using intermittent excitation for high sensitivity, wide detectable size range, and low heat generation
Shi et al. An ultrasensitive debris microsensor for oil health monitoring based on resistance–inductance parameter
Yang et al. A highly sensitive wear debris sensor based on differential detection