Bakavoli et al., 2005 - Google Patents
Synthesis of optically active imidazo [1, 2-a] pyrimidin-3 (2H)-onesBakavoli et al., 2005
- Document ID
- 10315420453363741439
- Author
- Bakavoli M
- Bagherzadeh G
- Rahimizadeh M
- Publication year
- Publication venue
- Mendeleev Communications
External Links
Snippet
The reactions of 2-chloro-4-(substituted amino)-6-methyl-5-nitropyrimidine 1 with (L)-α- amino acids gave substituted derivatives 3, which were converted to optically active imidazo [1, 2-a] pyrimidines 4 by treatment with either phosphorus oxychloride or polyphosphoric …
- QOOHQCURERRLIH-UHFFFAOYSA-N 2H-imidazo[1,2-a]pyrimidin-3-one   N1=CC=CN2C(=O)CN=C21 0 title description 2
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D487/00—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by C07D451/00 - C07D477/00
- C07D487/02—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
- C07D487/04—Ortho-condensed systems
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D491/00—Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00
- C07D491/02—Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00 in which the condensed system contains two hetero rings
- C07D491/04—Ortho-condensed systems
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D471/00—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
- C07D471/02—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
- C07D471/04—Ortho-condensed systems
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D513/00—Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for in groups C07D463/00, C07D477/00 or C07D499/00 - C07D507/00
- C07D513/02—Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for in groups C07D463/00, C07D477/00 or C07D499/00 - C07D507/00 in which the condensed system contains two hetero rings
- C07D513/06—Peri-condensed systems
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D498/00—Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and oxygen atoms as the only ring hetero atoms
- C07D498/02—Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and oxygen atoms as the only ring hetero atoms in which the condensed system contains two hetero rings
- C07D498/04—Ortho-condensed systems
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D498/00—Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and oxygen atoms as the only ring hetero atoms
- C07D498/02—Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and oxygen atoms as the only ring hetero atoms in which the condensed system contains two hetero rings
- C07D498/06—Peri-condensed systems
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D513/00—Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for in groups C07D463/00, C07D477/00 or C07D499/00 - C07D507/00
- C07D513/02—Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for in groups C07D463/00, C07D477/00 or C07D499/00 - C07D507/00 in which the condensed system contains two hetero rings
- C07D513/04—Ortho-condensed systems
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D493/00—Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system
- C07D493/02—Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system in which the condensed system contains two hetero rings
- C07D493/04—Ortho-condensed systems
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D495/00—Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms
- C07D495/02—Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms in which the condensed system contains two hetero rings
- C07D495/04—Ortho-condensed systems
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D487/00—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by C07D451/00 - C07D477/00
- C07D487/12—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by C07D451/00 - C07D477/00 in which the condensed system contains three hetero rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D491/00—Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00
- C07D491/12—Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00 in which the condensed system contains three hetero rings
- C07D491/14—Ortho-condensed systems
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D413/00—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
- C07D413/02—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D311/00—Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings
- C07D311/02—Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings ortho- or peri-condensed with carbocyclic rings or ring systems
- C07D311/04—Benzo[b]pyrans, not hydrogenated in the carbocyclic ring
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D207/00—Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D307/00—Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D405/00—Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| TWI774791B (en) | Methods for the preparation of 1,3-benzodioxole heterocyclic compounds | |
| US20100217000A1 (en) | Process for the Preparation of Thiazolopyrimidines | |
| Landreau et al. | Efficient regioselective synthesis of triheterocyclic compounds: imidazo [2, 1-b] benzothiazoles, pyrimido [2, 1-b] benzothiazolones and pyrimido [2, 1-b] benzothiazoles | |
| Bakavoli et al. | Synthesis of optically active imidazo [1, 2-a] pyrimidin-3 (2H)-ones | |
| WO2006021974A1 (en) | A process for synthesizing diol (viii)-an intermediate of montelukast sodium | |
| JPH08319290A (en) | Imidazole derivative | |
| Bakavoli et al. | Synthesis of Novel [1, 2, 4] triazolo [3, 2-b][2, 4, 6] benzothiadiazocin-11 (5H, 10H)-One Derivatives | |
| Cao et al. | Synthesis of 3-(3-Alkyl-5-thioxo-1H-4, 5-dihydro-1, 2, 4-triazol-4-yl) aminocarbonylchromones | |
| Dang et al. | Synthesis and ring closure reactions of pyrido [3, 2, 1‐jk] carbazol‐6‐ones | |
| Tumkevičius et al. | Synthesis of 4, 6-disubstituted thieno [2, 3-d] pyrimidines from 4, 6-dichloro-2-methylthiopyrimidine-5-carbaldehyde | |
| Fodor et al. | Preparation and ring transformation of isomeric β-lactam derivatives of bicyclic 1, 3-thiazines | |
| EP0203787B1 (en) | Process for preparing pyridyl-substituted imidazo[2,1-b]thiazoles and thiazines | |
| Cul et al. | Evaluation of N‐hydroxymethylphthalimide in alkaline medium: Novel entry to the tricyclic [1, 3] oxazepine core via an intramolecular π and O‐cationic cyclization | |
| Babaev et al. | Formation of oxazoles from 2-methylsulfanyl-N-phenacylpyridinium salts | |
| Prakash et al. | A CONVENIENT SYNTHESIS OF 8, 9, 10, 11-TETRAHYDRODIBENZO| b, h|[1, 6] NAPHTHYRIDIN-6 (5H) ONES | |
| Bogdanowicz-Szwed et al. | Hetero-Diels-Alder reactions of enaminothione with electrophilic olefins. Synthesis of 2-furyl substituted 2H-thiopyrans | |
| Fang et al. | Sequential three-component synthesis of 1, 4-bis [triazolo [4, 5-d] pyrimidin-7 (6H)-one] piperazines | |
| KR100856133B1 (en) | Improved process for preparing atorvastatin | |
| HU190728B (en) | Process for preparing pyrazolo/3,4-b/quinoline derivatives | |
| Moldvai et al. | Chemistry of indoles carrying a basic function. Part VII. A new aspect of Stobbe reaction | |
| JP4922761B2 (en) | Synthesis of substituted heterocyclic compounds. | |
| Yagodkina et al. | Cascade cyclization of methyl 2-(azidomethyl) furan-3-carboxylates with 2-cyanoacetamides. Efficient synthesis of a new heterocyclic system, furo [3, 2-e][1, 2, 3] triazolo-[1, 5-a][1, 3] diazepine | |
| Khairnar et al. | High Yielding, Multigram-Scale Synthesis of TBAJ-876 Fragment, 876A-B | |
| Usui et al. | Studies on furan derivatives. X. Preparation of 2‐Methylfuro [2, 3‐c] quinoline Derivatives | |
| FI75342B (en) | ETT NYTT FOERFARANDE FOER FRAMSTAELLNING AV PIROXICAM OCH MELLANPRODUKTER LAEMPLIGA FOER DESS FRAMSTAELLNING. |