Nisar et al., 2020 - Google Patents
Impact of surface coating on electrochemical and thermal behaviors of a Li-rich Li 1.2 Ni 0.16 Mn 0.56 Co 0.08 O 2 cathodeNisar et al., 2020
View HTML- Document ID
- 10476795384994386994
- Author
- Nisar U
- Petla R
- Al-Hail S
- Quddus A
- Monawwar H
- Shakoor A
- Essehli R
- Amin R
- Publication year
- Publication venue
- RSC advances
External Links
Snippet
Lithium-rich layered oxide materials are considered as potential cathode materials for future high-performance lithium-ion batteries (LIBs) owing to their high operating voltage and relatively high specific capacity. However, perceptible issues such as poor rate performance …
- 238000000576 coating method 0 title abstract description 20
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage
- Y02E60/12—Battery technology
- Y02E60/122—Lithium-ion batteries
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of or comprising active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/50—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
- H01M4/505—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of or comprising active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/52—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of or comprising active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of or comprising active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
- H01M4/5825—Oxygenated metallic slats or polyanionic structures, e.g. borates, phosphates, silicates, olivines
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of or comprising active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/136—Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of or comprising active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/139—Processes of manufacture
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of or comprising active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/624—Electric conductive fillers
- H01M4/625—Carbon or graphite
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/50—Fuel cells
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Nisar et al. | Impact of surface coating on electrochemical and thermal behaviors of a Li-rich Li 1.2 Ni 0.16 Mn 0.56 Co 0.08 O 2 cathode | |
| Li et al. | High‐nickel NMA: a cobalt‐free alternative to NMC and NCA cathodes for lithium‐ion batteries | |
| Chu et al. | Improved high-temperature cyclability of AlF3 modified spinel LiNi0. 5Mn1. 5O4 cathode for lithium-ion batteries | |
| Liang et al. | Nasicon-type surface functional modification in core–shell LiNi0. 5Mn0. 3Co0. 2O2@ NaTi2 (PO4) 3 cathode enhances its high-voltage cycling stability and rate capacity toward Li-Ion batteries | |
| Li et al. | Perovskite‐type SrVO3 as high‐performance anode materials for lithium‐ion batteries | |
| Zhou et al. | Formation and effect of residual lithium compounds on Li-rich cathode material Li1. 35 [Ni0. 35Mn0. 65] O2 | |
| Wu et al. | Solvothermal coating LiNi0. 8Co0. 15Al0. 05O2 microspheres with nanoscale Li2TiO3 shell for long lifespan Li-ion battery cathode materials | |
| He et al. | Electrochemical performance of zirconium doped lithium rich layered Li1. 2Mn0. 54Ni0. 13Co0. 13O2 oxide with porous hollow structure | |
| Xiao et al. | Effect of MgO and TiO2 coating on the electrochemical performance of Li‐rich cathode materials for lithium‐ion batteries | |
| Zhao et al. | One-step integrated surface modification to build a stable interface on high-voltage cathode for lithium-ion batteries | |
| Xu et al. | Enhanced electrochemical performance of LiNi0. 5Mn1. 5O4 cathode material by YPO4 surface modification | |
| Qiu et al. | Enhanced electrochemical performance with surface coating by reactive magnetron sputtering on lithium-rich layered oxide electrodes | |
| Wang et al. | High-Voltage LiCoO2 Material Encapsulated in a Li4Ti5O12Ultrathin Layer by High-Speed Solid-Phase Coating Process | |
| Xu et al. | The preparation and role of Li2ZrO3 surface coating LiNi0. 5Co0. 2Mn0. 3O2 as cathode for lithium-ion batteries | |
| Wang et al. | A nanocomposite of Li2MnO3 coated by FePO4 as cathode material for lithium ion batteries | |
| Chen et al. | Synergistic effects of stabilizing the surface structure and lowering the interface resistance in improving the low-temperature performances of layered lithium-rich materials | |
| Huang et al. | Preparation and performance of the heterostructured material with a Ni-rich layered oxide core and a LiNi0. 5Mn1. 5O4-like spinel shell | |
| KR20140084567A (en) | Positive active material coated with manganese phosphate for rechargeable lithium battery and process for preparing the same | |
| Li et al. | Surface modification of Sr-doped LaMnO3 coating by spray drying on Ni-rich LiNi0. 8Mn0. 1Co0. 1O2 cathode material for lithium-ion batteries | |
| Zhao et al. | Slower capacity/voltage degradation of surface engineered LiNi0. 92Co0. 05Mn0. 03O2 cathode for lithium-ion batteries | |
| Chudzik et al. | Surface modification and carbon coating effect on a high-performance K and S doped LiMn2O4 | |
| He et al. | Enhancement of the high-voltage electrochemical performance of an LiNi0. 5Co0. 2Mn0. 3O2 cathode via WO3 coating | |
| Bai et al. | A Co-Modified strategy for enhanced structural stability and long cycling life of Ni-Rich LiNi0. 8Co0. 1Mn0. 1O2 cathode material | |
| Sattar et al. | Unveiling the impact of Mg doping and in-situ Li reactive coating on the Ni-rich cathode material for LIBs | |
| Wang et al. | Superior electrochemical and kinetics performance of LiNi0. 8Co0. 15Al0. 05O2 cathode by neodymium synergistic modifying for lithium ion batteries |