Norton, 2006 - Google Patents
Third-generation sensors for night visionNorton, 2006
- Document ID
- 11475319085261118170
- Author
- Norton P
- Publication year
- Publication venue
- Opto-Electronics Review
External Links
Snippet
Third generation sensors are under development to enhance capabilities for target detection and identification, threat warning, and 3D imaging. Distinct programs for both cooled HgCdTe and uncooled microbolometer devices are part of this thrust. This paper will …
- 230000004297 night vision 0 title description 8
Classifications
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/14—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infra-red radiation, light, electromagnetic radiation of shorter wavelength, or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
- H01L27/144—Devices controlled by radiation
- H01L27/146—Imager structures
- H01L27/14601—Structural or functional details thereof
- H01L27/14609—Pixel-elements with integrated switching, control, storage or amplification elements
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/14—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infra-red radiation, light, electromagnetic radiation of shorter wavelength, or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
- H01L27/144—Devices controlled by radiation
- H01L27/146—Imager structures
- H01L27/14643—Photodiode arrays; MOS imagers
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/14—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infra-red radiation, light, electromagnetic radiation of shorter wavelength, or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
- H01L27/144—Devices controlled by radiation
- H01L27/146—Imager structures
- H01L27/14601—Structural or functional details thereof
- H01L27/14603—Special geometry or disposition of pixel-elements, address-lines or gate-electrodes
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/14—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infra-red radiation, light, electromagnetic radiation of shorter wavelength, or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
- H01L27/144—Devices controlled by radiation
- H01L27/146—Imager structures
- H01L27/148—Charge coupled imagers
- H01L27/14868—CCD or CID colour imagers
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N3/00—Scanning details of television systems
- H04N3/10—Scanning details of television systems by means not exclusively optical-mechanical
- H04N3/14—Scanning details of television systems by means not exclusively optical-mechanical by means of electrically scanned solid-state devices
- H04N3/15—Scanning details of television systems by means not exclusively optical-mechanical by means of electrically scanned solid-state devices for picture signal generation
- H04N3/155—Control of the image-sensor operation, e.g. image processing within the image-sensor
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N5/00—Details of television systems
- H04N5/30—Transforming light or analogous information into electric information
- H04N5/33—Transforming infra-red radiation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N5/00—Details of television systems
- H04N5/30—Transforming light or analogous information into electric information
- H04N5/335—Transforming light or analogous information into electric information using solid-state image sensors [SSIS]
- H04N5/369—SSIS architecture; Circuitry associated therewith
- H04N5/374—Addressed sensors, e.g. MOS or CMOS sensors
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N5/00—Details of television systems
- H04N5/222—Studio circuitry; Studio devices; Studio equipment; Cameras comprising an electronic image sensor, e.g. digital cameras, video cameras, TV cameras, video cameras, camcorders, webcams, camera modules for embedding in other devices, e.g. mobile phones, computers or vehicles
- H04N5/225—Television cameras; Cameras comprising an electronic image sensor, e.g. digital cameras, video cameras, video cameras, camcorders, webcams, camera modules for embedding in other devices, e.g. mobile phones, computers or vehicles
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N9/00—Details of colour television systems
- H04N9/04—Picture signal generators
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L31/00—Semiconductor devices sensitive to infra-red radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus peculiar to the manufacture or treatment thereof or of parts thereof; Details thereof
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Norton | Third-generation sensors for night vision | |
| US6323941B1 (en) | Sensor assembly for imaging passive infrared and active LADAR and method for same | |
| US10827135B2 (en) | BDI based pixel for synchronous frame-based and asynchronous event-driven readouts | |
| Bai et al. | Teledyne imaging sensors: silicon CMOS imaging technologies for x-ray, UV, visible, and near infrared | |
| Reibel et al. | Infrared dual-band detectors for next generation | |
| US20080136933A1 (en) | Apparatus for controlling operation of a multiple photosensor pixel image sensor | |
| King et al. | Third-generation 1280× 720 FPA development status at Raytheon Vision Systems | |
| Radford et al. | Third generation FPA development status at Raytheon Vision Systems | |
| EP2835830A2 (en) | Night-vision sensor and apparatus | |
| Hosticka et al. | CMOS imaging for automotive applications | |
| Cabanski et al. | Third-generation focal plane array IR detection modules and applications | |
| Reibel et al. | Large format, small pixel pitch and hot detectors at SOFRADIR | |
| TW202339487A (en) | Solid-state imaging device, electronic apparatus, and range finding system | |
| Goldberg et al. | Comparison of HgCdTe and quantum-well infrared photodetector dual-band focal plane arrays | |
| Sizov | Infrared detectors: outlook and means | |
| Capone et al. | Evaluation of a Schottky IRCCD staring mosaic focal plane | |
| Reibel et al. | Latest developments in advanced MCT infrared cooled detectors | |
| Ratches | Current and future trends in military night vision applications | |
| Yuan et al. | Geiger-mode LADAR cameras | |
| Martin et al. | 320x240 pixel InGaAs/InP focal plane array for short-wave infrared and visible light imaging | |
| Norton | Third-generation sensors for night vision | |
| Ettenberg et al. | High-resolution SWIR arrays for imaging at night | |
| Reibel et al. | High-performance MCT and QWIP IR detectors at Sofradir | |
| Chen | Advanced FPAs for multiple applications | |
| Hornsey | Design and fabrication of integrated image sensors |