Pixley et al., 1996 - Google Patents
Commercial design verification: Methodology and toolsPixley et al., 1996
- Document ID
- 1149829095443740529
- Author
- Pixley C
- Strader N
- Bruce W
- Park J
- Kaufmann M
- Shultz K
- Burns M
- Kumar J
- Yuan J
- Nguyen J
- Publication year
- Publication venue
- Proceedings International Test Conference 1996. Test and Design Validity
External Links
Snippet
Commercial design verification is a complex activity involving many abstraction levels (such as architectural, register transfer, gate, switch, circuit, fabrication), many different aspects of design (such as timing, speed, functional, power, reliability and manufacturability) and many …
- 238000000034 method 0 title abstract description 55
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/50—Computer-aided design
- G06F17/5009—Computer-aided design using simulation
- G06F17/5022—Logic simulation, e.g. for logic circuit operation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/50—Computer-aided design
- G06F17/5009—Computer-aided design using simulation
- G06F17/504—Formal methods
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/50—Computer-aided design
- G06F17/5068—Physical circuit design, e.g. layout for integrated circuits or printed circuit boards
- G06F17/5081—Layout analysis, e.g. layout verification, design rule check
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/50—Computer-aided design
- G06F17/5009—Computer-aided design using simulation
- G06F17/5036—Computer-aided design using simulation for analog modelling, e.g. for circuits, spice programme, direct methods, relaxation methods
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/50—Computer-aided design
- G06F17/5045—Circuit design
- G06F17/505—Logic synthesis, e.g. technology mapping, optimisation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/50—Computer-aided design
- G06F17/5045—Circuit design
- G06F17/5054—Circuit design for user-programmable logic devices, e.g. field programmable gate arrays [FPGA]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F11/00—Error detection; Error correction; Monitoring
- G06F11/22—Detection or location of defective computer hardware by testing during standby operation or during idle time, e.g. start-up testing
- G06F11/26—Functional testing
- G06F11/261—Functional testing by simulating additional hardware, e.g. fault simulation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F11/00—Error detection; Error correction; Monitoring
- G06F11/36—Preventing errors by testing or debugging software
- G06F11/362—Software debugging
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F2217/00—Indexing scheme relating to computer aided design [CAD]
- G06F2217/70—Fault tolerant, i.e. transient fault suppression
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F2217/00—Indexing scheme relating to computer aided design [CAD]
- G06F2217/86—Hardware-Software co-design
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F11/00—Error detection; Error correction; Monitoring
- G06F11/30—Monitoring
- G06F11/34—Recording or statistical evaluation of computer activity, e.g. of down time, of input/output operation; Recording or statistical evaluation of user activity, e.g. usability assessment
- G06F11/3457—Performance evaluation by simulation
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/28—Testing of electronic circuits, e.g. by signal tracer
- G01R31/317—Testing of digital circuits
- G01R31/3181—Functional testing
- G01R31/3183—Generation of test inputs, e.g. test vectors, patterns or sequence
- G01R31/318342—Generation of test inputs, e.g. test vectors, patterns or sequence by preliminary fault modelling, e.g. analysis, simulation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F8/00—Arrangements for software engineering
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F7/00—Methods or arrangements for processing data by operating upon the order or content of the data handled
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for programme control, e.g. control unit
- G06F9/06—Arrangements for programme control, e.g. control unit using stored programme, i.e. using internal store of processing equipment to receive and retain programme
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F2207/00—Indexing scheme relating to methods or arrangements for processing data by operating upon the order or content of the data handled
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/28—Testing of electronic circuits, e.g. by signal tracer
- G01R31/317—Testing of digital circuits
- G01R31/3181—Functional testing
- G01R31/3183—Generation of test inputs, e.g. test vectors, patterns or sequence
- G01R31/318385—Random or pseudo-random test pattern
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/28—Testing of electronic circuits, e.g. by signal tracer
- G01R31/317—Testing of digital circuits
- G01R31/3181—Functional testing
- G01R31/3185—Reconfiguring for testing, e.g. LSSD, partitioning
- G01R31/318533—Reconfiguring for testing, e.g. LSSD, partitioning using scanning techniques, e.g. LSSD, Boundary Scan, JTAG
- G01R31/318583—Design for test
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Kuehlmann et al. | Verity—a formal verification program for custom CMOS circuits | |
| Aziz et al. | HSIS: A BDD-based environment for formal verification | |
| US6714902B1 (en) | Method and apparatus for critical and false path verification | |
| Peischl et al. | Automated source-level error localization in hardware designs | |
| Pixley et al. | Commercial design verification: Methodology and tools | |
| Chappell et al. | LAMP: Logic‐Circuit Simulators | |
| Huang et al. | AQUILA: An equivalence checking system for large sequential designs | |
| Campenhout et al. | High-level design verification of microprocessors via error modeling | |
| Singhal et al. | The validity of retiming sequential circuits | |
| Casaubieilh et al. | Functional verification methodology of Chameleon processor | |
| Sangiovanni-Vincentelli et al. | Verification of electronic systems | |
| Kumar et al. | Emulation verification of the Motorola 68060 | |
| Fu et al. | Fuzzing Hardware: Faith or Reality? | |
| Isles et al. | Computing reachable control states of systems modeled with uninterpreted functions and infinite memory | |
| Kedem et al. | OASIS: A silicon compiler for semi-custom design | |
| Roy et al. | A novel approach to accurate timing verification using RTL descriptions | |
| Mahmoudi et al. | A Systematic Mapping Study on SystemC/TLM Modeling Capabilities in New Research Domains | |
| Roy | The use of RTL descriptions in accurate timing verification and test generation (VLSI) | |
| Cory et al. | Developments in verification of design correctness (A Tutorial) | |
| Suryasarman et al. | Rsbst: an accelerated automated software-based self-test synthesis for processor testing | |
| Leveugle et al. | Optimized generation of VHDL mutants for injection of transition errors | |
| Harris | Hardware/software covalidation | |
| Foster | Applied Boolean equivalence verification and RTL static sign-off | |
| Chen et al. | A hybrid numeric/symbolic program for checking functional and timing compatibility of synthesized designs | |
| Sunkari et al. | A scalable symbolic simulator for Verilog RTL |