[go: up one dir, main page]

Si-Yao et al., 2019 - Google Patents

Understanding kernel size in blind deconvolution

Si-Yao et al., 2019

View PDF
Document ID
1159059733717696333
Author
Si-Yao L
Ren D
Yin Q
Publication year
Publication venue
2019 IEEE Winter Conference on Applications of Computer Vision (WACV)

External Links

Snippet

Most blind deconvolution methods usually pre-define a large kernel size to guarantee the support domain. Blur kernel estimation error is likely to be introduced, yielding severe artifacts in deblurring results. In this paper, we first theoretically and experimentally analyze …
Continue reading at arxiv.org (PDF) (other versions)

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration, e.g. from bit-mapped to bit-mapped creating a similar image
    • G06T5/001Image restoration
    • G06T5/002Denoising; Smoothing
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration, e.g. from bit-mapped to bit-mapped creating a similar image
    • G06T5/001Image restoration
    • G06T5/003Deblurring; Sharpening
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K9/00Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
    • G06K9/62Methods or arrangements for recognition using electronic means
    • G06K9/6217Design or setup of recognition systems and techniques; Extraction of features in feature space; Clustering techniques; Blind source separation
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K9/00Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
    • G06K9/62Methods or arrangements for recognition using electronic means
    • G06K9/6267Classification techniques
    • G06K9/6268Classification techniques relating to the classification paradigm, e.g. parametric or non-parametric approaches
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K9/00Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
    • G06K9/36Image preprocessing, i.e. processing the image information without deciding about the identity of the image
    • G06K9/46Extraction of features or characteristics of the image
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20172Image enhancement details
    • G06T2207/20182Noise reduction or smoothing in the temporal domain; Spatio-temporal filtering
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/16Matrix or vector computation, e.g. matrix-matrix or matrix-vector multiplication, matrix factorization
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration, e.g. from bit-mapped to bit-mapped creating a similar image
    • G06T5/20Image enhancement or restoration, e.g. from bit-mapped to bit-mapped creating a similar image by the use of local operators
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T3/00Geometric image transformation in the plane of the image, e.g. from bit-mapped to bit-mapped creating a different image
    • G06T3/40Scaling the whole image or part thereof
    • G06T3/4084Transform-based scaling, e.g. FFT domain scaling
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration, e.g. from bit-mapped to bit-mapped creating a similar image
    • G06T5/007Dynamic range modification
    • G06T5/008Local, e.g. shadow enhancement
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20048Transform domain processing
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T3/00Geometric image transformation in the plane of the image, e.g. from bit-mapped to bit-mapped creating a different image
    • G06T3/40Scaling the whole image or part thereof
    • G06T3/4053Super resolution, i.e. output image resolution higher than sensor resolution
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T11/002D [Two Dimensional] image generation

Similar Documents

Publication Publication Date Title
Kadkhodaie et al. Stochastic solutions for linear inverse problems using the prior implicit in a denoiser
Bigdeli et al. Image restoration using autoencoding priors
Zhang et al. Learning deep CNN denoiser prior for image restoration
Ren et al. Simultaneous fidelity and regularization learning for image restoration
Liu et al. Learning converged propagations with deep prior ensemble for image enhancement
Matakos et al. Accelerated edge-preserving image restoration without boundary artifacts
CN107689034B (en) A denoising method and device
Dong et al. Image deblurring and super-resolution by adaptive sparse domain selection and adaptive regularization
Zhang et al. Sparse representation based blind image deblurring
Xu et al. A fast patch-dictionary method for whole image recovery
US10198801B2 (en) Image enhancement using self-examples and external examples
CN103761710B (en) The blind deblurring method of efficient image based on edge self-adaption
Herbreteau et al. DCT2net: An interpretable shallow CNN for image denoising
CN113808032A (en) Multi-stage progressive image denoising algorithm
Teodoro et al. Image restoration and reconstruction using targeted plug-and-play priors
Thakur et al. PReLU and edge‐aware filter‐based image denoiser using convolutional neural network
EP1794716A1 (en) Context-based denoiser that simultaneously updates probabilities for multiple contexts
Peng Joint and direct optimization for dictionary learning in convolutional sparse representation
Si-Yao et al. Understanding kernel size in blind deconvolution
Rioux et al. The maximum entropy on the mean method for image deblurring
Zou et al. Restoration of hyperspectral image contaminated by Poisson noise using spectral unmixing
Shabtay et al. Pip: Positional-encoding image prior
CN118096587A (en) Document image deblurring method, system and equipment based on deep learning
Helminger et al. Generic image restoration with flow based priors
Lin et al. Reconstruction of single image from multiple blurry measured images