[go: up one dir, main page]

Wang et al., 2017 - Google Patents

Biorthogonal frequency division multiple access

Wang et al., 2017

View PDF @Full View
Document ID
11513020711245804793
Author
Wang G
Shao K
Zhuang L
Publication year
Publication venue
IET Communications

External Links

Snippet

Orthogonal frequency division multiple access (OFDMA) multicarrier modulation is the key technology in wireless communication. However, OFDMA can just get the best performance under strict carrier frequency synchronisation. Furthermore, the rectangular prototype …
Continue reading at ietresearch.onlinelibrary.wiley.com (PDF) (other versions)

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • H04L27/2613Structure of the reference signals per se
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter
    • H04L27/2627Modulators
    • H04L27/264Filterbank multicarrier [FBMC]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter
    • H04L27/2627Modulators
    • H04L27/2634IFFT/IDFT in combination with other circuits for modulation
    • H04L27/2636IFFT/IDFT in combination with other circuits for modulation with FFT/DFT, e.g. standard SC-FDMA transmitter or DFT-SOFDM
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2614Peak power aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/2605Symbol extensions
    • H04L27/2607Cyclic extensions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver
    • H04L27/2655Synchronisation arrangements
    • H04L27/2657Carrier synchronisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver
    • H04L27/2655Synchronisation arrangements
    • H04L27/2662Symbol synchronisation
    • H04L27/2663Coarse synchronisation, e.g. by correlation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; Arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks ; Receiver end arrangements for processing baseband signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; Arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0016Time-frequency-code
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L63/00Network architectures or network communication protocols for network security

Similar Documents

Publication Publication Date Title
Lin et al. Orthogonal delay-Doppler division multiplexing modulation
Wu et al. Influence of pulse shaping filters on PAPR performance of underwater 5G communication system technique: GFDM
Conceição et al. A survey of candidate waveforms for beyond 5G systems
CN109756434A (en) System and method for orthogonal frequency division multiplexing-offset quadrature amplitude modulation
Wang et al. Bit error rate analysis of generalised frequency division multiplexing with weighted‐type fractional Fourier transform precoding
Aldababseh et al. Estimation of FBMC/OQAM fading channels using dual Kalman filters
Al-Gharabally et al. Frequency-domain subcarrier diversity receiver for discrete Hartley transform OFDM systems
Lin et al. Iterative smoothing filtering schemes by using clipping noise‐assisted signals for PAPR reduction in OFDM‐based carrier aggregation systems
Singhal et al. A review and comparative analysis of PAPR reduction techniques of OFDM system
Vaiyamalai et al. PAPR reduction in SLM–OFDM system using Lehmer sequence without explicit side information
Li et al. Fundamentals of delay-Doppler communications: Practical implementation and extensions to OTFS
Yang et al. Modified SLM scheme of FBMC signal in satellite communications
Nunes et al. Block‐windowed burst OFDM: a high‐efficiency multicarrier technique
Elavarasan et al. Peak-power reduction using improved partial transmit sequence in orthogonal frequency division multiplexing systems
Hujijo et al. Enhancing spectral efficiency with low complexity filtered‐orthogonal frequency division multiplexing in visible light communication system
Wang et al. Partial phase weighting selected mapping scheme for peak‐to‐average power ratio reduction in orthogonal frequency division multiplexing system
Hu et al. Low‐complexity PTS schemes for PAPR reduction in OFDM systems
Skrzypczak et al. OFDM/OQAM modulation for efficient dynamic spectrum access
AhmadiMoghaddam et al. Peak‐to‐average power ratio reduction in LTE‐advanced systems using low complexity and low delay PTS
Wang et al. Biorthogonal frequency division multiple access
Fu et al. Non‐orthogonal frequency division multiplexing based on sparse representation
Savaux Peak to average power ratio reduction techniques based on chirp selection for single and multi‐user orthogonal chirp division multiplexing system
Kaur et al. Comparative analysis of ICI self cancellation techniques for wavelet OFDM under different channels in simulink
Peng et al. Discrete Fourier transform‐based block transmission for multi‐carrier faster‐than‐Nyquist signalling
Zhang et al. Complementary M‐ary orthogonal spreading OFDM architecture for HF communication link