Mitteroecker et al., 2011 - Google Patents
Linear discrimination, ordination, and the visualization of selection gradients in modern morphometricsMitteroecker et al., 2011
View PDF- Document ID
- 11650588506538491501
- Author
- Mitteroecker P
- Bookstein F
- Publication year
- Publication venue
- Evolutionary Biology
External Links
Snippet
Linear discriminant analysis (LDA) is a multivariate classification technique frequently applied to morphometric data in various biomedical disciplines. Canonical variate analysis (CVA), the generalization of LDA for multiple groups, is often used in the exploratory style of …
- 230000003562 morphometric 0 title abstract description 31
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/6217—Design or setup of recognition systems and techniques; Extraction of features in feature space; Clustering techniques; Blind source separation
- G06K9/6232—Extracting features by transforming the feature space, e.g. multidimensional scaling; Mappings, e.g. subspace methods
- G06K9/6247—Extracting features by transforming the feature space, e.g. multidimensional scaling; Mappings, e.g. subspace methods based on an approximation criterion, e.g. principal component analysis
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/6267—Classification techniques
- G06K9/6268—Classification techniques relating to the classification paradigm, e.g. parametric or non-parametric approaches
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/6217—Design or setup of recognition systems and techniques; Extraction of features in feature space; Clustering techniques; Blind source separation
- G06K9/6228—Selecting the most significant subset of features
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/6217—Design or setup of recognition systems and techniques; Extraction of features in feature space; Clustering techniques; Blind source separation
- G06K9/6261—Design or setup of recognition systems and techniques; Extraction of features in feature space; Clustering techniques; Blind source separation partitioning the feature space
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F19/00—Digital computing or data processing equipment or methods, specially adapted for specific applications
- G06F19/10—Bioinformatics, i.e. methods or systems for genetic or protein-related data processing in computational molecular biology
- G06F19/24—Bioinformatics, i.e. methods or systems for genetic or protein-related data processing in computational molecular biology for machine learning, data mining or biostatistics, e.g. pattern finding, knowledge discovery, rule extraction, correlation, clustering or classification
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F19/00—Digital computing or data processing equipment or methods, specially adapted for specific applications
- G06F19/10—Bioinformatics, i.e. methods or systems for genetic or protein-related data processing in computational molecular biology
- G06F19/20—Bioinformatics, i.e. methods or systems for genetic or protein-related data processing in computational molecular biology for hybridisation or gene expression, e.g. microarrays, sequencing by hybridisation, normalisation, profiling, noise correction models, expression ratio estimation, probe design or probe optimisation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F19/00—Digital computing or data processing equipment or methods, specially adapted for specific applications
- G06F19/10—Bioinformatics, i.e. methods or systems for genetic or protein-related data processing in computational molecular biology
- G06F19/28—Bioinformatics, i.e. methods or systems for genetic or protein-related data processing in computational molecular biology for programming tools or database systems, e.g. ontologies, heterogeneous data integration, data warehousing or computing architectures
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/10—Complex mathematical operations
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/30—Information retrieval; Database structures therefor; File system structures therefor
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/36—Image preprocessing, i.e. processing the image information without deciding about the identity of the image
- G06K9/46—Extraction of features or characteristics of the image
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N99/00—Subject matter not provided for in other groups of this subclass
- G06N99/005—Learning machines, i.e. computer in which a programme is changed according to experience gained by the machine itself during a complete run
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computer systems based on biological models
- G06N3/02—Computer systems based on biological models using neural network models
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Mitteroecker et al. | Linear discrimination, ordination, and the visualization of selection gradients in modern morphometrics | |
| Konishi | Introduction to multivariate analysis: linear and nonlinear modeling | |
| Strauss | Discriminating groups of organisms | |
| Schlager | Morpho and Rvcg–shape analysis in R: R-packages for geometric morphometrics, shape analysis and surface manipulations | |
| Finak et al. | Optimizing transformations for automated, high throughput analysis of flow cytometry data | |
| Wu et al. | A priori assessment of prediction confidence for data-driven turbulence modeling | |
| Devine et al. | A registration and deep learning approach to automated landmark detection for geometric morphometrics | |
| Demetriou et al. | A deep learning framework for generation and analysis of driving scenario trajectories | |
| Mitteroecker et al. | The ontogenetic trajectory of the phenotypic covariance matrix, with examples from craniofacial shape in rats and humans | |
| Bookstein et al. | Comparing covariance matrices by relative eigenanalysis, with applications to organismal biology | |
| Gunal et al. | Subspace based feature selection for pattern recognition | |
| Huttegger et al. | Invariance and meaningfulness in phenotype spaces | |
| Le Maître et al. | Multivariate comparison of variance in R | |
| Wang et al. | SUSCC: secondary construction of feature space based on UMAP for rapid and accurate clustering large-scale single cell RNA-seq data | |
| Courtenay | Can we restore balance to geometric morphometrics? A theoretical evaluation of how sample imbalance conditions ordination and classification | |
| Vladov et al. | Neural network system for predicting anomalous data in applied sensor systems | |
| Peña-Malavera et al. | Comparison of algorithms to infer genetic population structure from unlinked molecular markers | |
| Kim et al. | Comprehensive evaluation of matrix factorization methods for the analysis of DNA microarray gene expression data | |
| De et al. | Systematic review of free and open source software (FOSS) employed in ecomorphological studies with recommendations for user-friendly developments | |
| Minin et al. | Comparison of universal approximators incorporating partial monotonicity by structure | |
| CN111581469B (en) | Multi-subspace representation-based partial multi-mark learning method | |
| Kersting et al. | Simplex distributions for embedding data matrices over time | |
| Farnell et al. | Multilevel models of age-related changes in facial shape in adolescents | |
| Higgs et al. | Spectral embedding finds meaningful (relevant) structure in image and microarray data | |
| Keya et al. | Machine learning in materials modeling and design |