Shopova et al., 2009 - Google Patents
Highly sensitive tuning of coupled optical ring resonators by microfluidicsShopova et al., 2009
View PDF- Document ID
- 11668879344799009965
- Author
- Shopova S
- Sun Y
- Rosenberger A
- Fan X
- Publication year
- Publication venue
- Microfluidics and nanofluidics
External Links
Snippet
The authors develop optofluidic coupled ring resonator (OCRR) system in which one of the ring resonators serves as a microfluidic channel. Highly sensitive tuning of the OCRR is demonstrated by making small changes in the refractive index of the fluid. A refractometric …
- 230000003287 optical 0 title description 9
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using infra-red, visible or ultra-violet light
- G01N21/75—Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
- G01N21/77—Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
- G01N21/7703—Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator using reagent-clad optical fibres or optical waveguides
- G01N21/774—Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator using reagent-clad optical fibres or optical waveguides the reagent being on a grating or periodic structure
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using infra-red, visible or ultra-violet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/31—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
- G01N21/35—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infra-red light
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using infra-red, visible or ultra-violet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/41—Refractivity; Phase-affecting properties, e.g. optical path length
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using infra-red, visible or ultra-violet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/65—Raman scattering
- G01N2021/653—Coherent methods [CARS]
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using infra-red, visible or ultra-violet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/55—Specular reflectivity
- G01N21/552—Attenuated total reflection
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
- G02B6/00—Light guides
- G02B6/10—Light guides of the optical waveguide type
- G02B6/12—Light guides of the optical waveguide type of the integrated circuit kind
- G02B6/122—Light guides of the optical waveguide type of the integrated circuit kind basic optical elements, e.g. light-guiding paths
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using infra-red, visible or ultra-violet light
- G01N21/01—Arrangements or apparatus for facilitating the optical investigation
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01K—MEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
- G01K11/00—Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
- G01K11/12—Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using change of colour or translucency
- G01K11/125—Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using change of colour or translucency using change in reflectance
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
- G02B6/00—Light guides
- G02B6/02—Optical fibre with cladding with or without a coating
- G02B6/02295—Microstructured optical fibre
- G02B6/02314—Plurality of longitudinal structures extending along optical fibre axis, e.g. holes
-
- G—PHYSICS
- G02—OPTICS
- G02F—DEVICES OR ARRANGEMENTS, THE OPTICAL OPERATION OF WHICH IS MODIFIED BY CHANGING THE OPTICAL PROPERTIES OF THE MEDIUM OF THE DEVICES OR ARRANGEMENTS FOR THE CONTROL OF THE INTENSITY, COLOUR, PHASE, POLARISATION OR DIRECTION OF LIGHT, e.g. SWITCHING, GATING, MODULATING OR DEMODULATING; TECHNIQUES OR PROCEDURES FOR THE OPERATION THEREOF; FREQUENCY-CHANGING; NON-LINEAR OPTICS; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating, or modulating; Non-linear optics
- G02F1/35—Non-linear optics
-
- G—PHYSICS
- G02—OPTICS
- G02F—DEVICES OR ARRANGEMENTS, THE OPTICAL OPERATION OF WHICH IS MODIFIED BY CHANGING THE OPTICAL PROPERTIES OF THE MEDIUM OF THE DEVICES OR ARRANGEMENTS FOR THE CONTROL OF THE INTENSITY, COLOUR, PHASE, POLARISATION OR DIRECTION OF LIGHT, e.g. SWITCHING, GATING, MODULATING OR DEMODULATING; TECHNIQUES OR PROCEDURES FOR THE OPERATION THEREOF; FREQUENCY-CHANGING; NON-LINEAR OPTICS; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating, or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating, or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Peng et al. | High-sensitivity refractive index sensing based on Fano resonances in a photonic crystal cavity-coupled microring resonator | |
| Chow et al. | Ultracompact biochemical sensor built with two-dimensional photonic crystal microcavity | |
| Suebka et al. | Ultra-high-Q free-space coupling to microtoroid resonators | |
| Kavungal et al. | Thermo-optic tuning of a packaged whispering gallery mode resonator filled with nematic liquid crystal | |
| Shopova et al. | Highly sensitive tuning of coupled optical ring resonators by microfluidics | |
| Liu et al. | Integrated optical chemical sensor based on an SOI ring resonator using phase-interrogation | |
| Chen et al. | Highly sensitive refractive index sensor based on Vernier effect in coupled micro-ring resonators | |
| Ricchiuti et al. | Photothermal spectroscopy on-chip sensor for the measurement of a PMMA film using a silicon nitride micro-ring resonator and an external cavity quantum cascade laser | |
| Toccafondo et al. | Robust and low-cost interrogation technique for integrated photonic biochemical sensors based on Mach–Zehnder interferometers | |
| Yin et al. | Universal ultra-sensitive refractive index sensor based on an integrated SiO2 asymmetric Mach-Zehnder interference filter (AMZIF) | |
| Rifat et al. | SOI waveguide-based biochemical sensors | |
| Ruege et al. | Multimode waveguide-cavity sensor based on fringe visibility detection | |
| Azab et al. | Multifunctional plasmonic photonic crystal fiber biosensors | |
| Goncharenko et al. | Optimizing the structure of optical temperature sensors on the base of slot and double-slot ring waveguides with liquid crystal filling | |
| Barnes et al. | Loss determination in microsphere resonators by phase-shift cavity ring-down measurements | |
| Shwetha et al. | Design and analysis of silicon ring resonator for bio-sensing application | |
| Zhao et al. | Compact silicon-on-insulator asymmetric embedded dual microring resonators for sensing | |
| Barea et al. | Photonic molecules for application in silicon-on-insulator optical sensors | |
| Tsarev | Overview of Integrated Optical Sensors Based on Silicon: Forecasts and Results of the Decade [invited Article] | |
| de Goede et al. | High quality factor Al2O3 microring resonators for on-chip sensing applications | |
| Rajagopal et al. | Enhanced dissipative sensing in a microresonator with multimode input (experiment) | |
| Wang et al. | Integrated microsphere whispering gallery mode probe for highly sensitive refractive index measurement | |
| Bekhti et al. | Simulation of Optical Hollow Microbottle Resonator for Sensing Applications | |
| Zhao et al. | Vernier effect of cascaded dual microring sensor | |
| Yang et al. | Optimization of whispering gallery modes in microbubble resonators for sensing applications |