[go: up one dir, main page]

Chang et al., 2010 - Google Patents

High efficiency power management system for solar energy harvesting applications

Chang et al., 2010

Document ID
11774696653711659109
Author
Chang M
Wu J
Hsieh W
Lin S
Liang Y
Wei H
Publication year
Publication venue
2010 IEEE Asia Pacific Conference on Circuits and Systems

External Links

Snippet

A high efficiency power management system for solar energy harvesting applications is proposed. The power management system receives power from photovoltaic (PV) cell and generate different voltage levels, they are 1V~ 0.3 V for analog circuitry and low power …
Continue reading at ieeexplore.ieee.org (other versions)

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/06Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider
    • H02M3/07Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider using capacitors charged and discharged alternately by semiconductor devices with control electrode, e.g. charge pumps
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/35Parallel operation in networks using both storage and other dc sources, e.g. providing buffering with light sensitive cells
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging several batteries simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/10Parallel operation of dc sources
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion electric or electronic aspects
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangement for emergency or standby power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangement for emergency or standby power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangement for emergency or standby power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over

Similar Documents

Publication Publication Date Title
El-Damak et al. A 10 nW–1 µW power management IC with integrated battery management and self-startup for energy harvesting applications
Ozaki et al. Fully-integrated high-conversion-ratio dual-output voltage boost converter with MPPT for low-voltage energy harvesting
Shih et al. An inductorless DC–DC converter for energy harvesting with a 1.2-$\mu\hbox {W} $ bandgap-referenced output controller
Elhebeary et al. Dual-source self-start high-efficiency microscale smart energy harvesting system for IoT
TWI394349B (en) Solar power management system with maximum power tracking
Mahmoud et al. A gain-controlled, low-leakage Dickson charge pump for energy-harvesting applications
KR20110108315A (en) Power boost platform
Li et al. A 32nA Fully Autonomous Multi-Input Single-Inductor Multi-Output Energy-Harvesting and Power-Management Platform with 1.2× 10 5 Dynamic Range, Integrated MPPT, and Multi-Modal Cold Start-Up
Lu et al. Efficient power conversion for ultra low voltage micro scale energy transducers
Maeng et al. A high-voltage dual-input buck converter with bidirectional inductor current for triboelectric energy-harvesting applications
Uprety et al. A 0.65-mW-to-1-W photovoltaic energy harvester with irradiance-aware auto-configurable hybrid MPPT achieving> 95% MPPT efficiency and 2.9-ms FOCV transient time
Cheng et al. A reconfigurable capacitive power converter with capacitance redistribution for indoor light-powered batteryless Internet-of-Things devices
Rozgić et al. A 0.78 mW/cm 2 autonomous thermoelectric energy-harvester for biomedical sensors
Abuellil et al. Multiple-input harvesting power management unit with enhanced boosting scheme for IoT applications
Ram et al. A solar based power module for battery-less IoT sensors towards sustainable smart cities
Wang et al. Single-inductor dual-input triple-output buck–boost converter with clockless shortest power path control strategy for IoT nodes
US9537391B2 (en) Voltage regulation of a DC/DC converter
Cheng et al. A redistributable capacitive power converter for indoor light-powered batteryless IoT devices
Shao et al. An inductor-less micro solar power management system design for energy harvesting applications
Park et al. Maximum power transfer tracking in a solar USB charger for smartphones
Chang et al. High efficiency power management system for solar energy harvesting applications
WO2016073944A1 (en) Autonomous thermoelectric energy harvesting platform for biomedical sensors
Ren et al. A low-ripple efficiency-improvement switched-capacitor boost converter for battery-supplied low-noise applications
Hora et al. Low input voltage charge pump for thermoelectric energy harvesting applications in 65nm CMOS technology
Rajora et al. Design and analysis of a low-power, high-efficiency 4-stage Dickson charge pump using CNTFETs