[go: up one dir, main page]

Huber et al., 2005 - Google Patents

Active fiber composites: optimization of the manufacturing process and their poling behavior

Huber et al., 2005

Document ID
11913567266023898389
Author
Huber C
Spori D
Melnykowycz M
Barbezat M
Publication year
Publication venue
Smart Structures and Materials 2005: Active Materials: Behavior and Mechanics

External Links

Snippet

The scientific community has put significant efforts into the manufacturing and optimization of sensors and actuators made of piezoelectric fibres with interdigitated electrodes, well known as Active Fibre Composites (AFC). A great advantage of such AFC is their flexibility and the …
Continue reading at www.spiedigitallibrary.org (other versions)

Classifications

    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L41/00Piezo-electric devices in general; Electrostrictive devices in general; Magnetostrictive devices in general; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L41/02Details
    • H01L41/04Details of piezo-electric or electrostrictive devices
    • H01L41/047Electrodes or electrical connection arrangements
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L41/00Piezo-electric devices in general; Electrostrictive devices in general; Magnetostrictive devices in general; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L41/22Processes or apparatus specially adapted for the assembly, manufacture or treatment of piezo-electric or electrostrictive devices or of parts thereof
    • H01L41/35Forming piezo-electric or electrostrictive materials
    • H01L41/45Organic materials
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L41/00Piezo-electric devices in general; Electrostrictive devices in general; Magnetostrictive devices in general; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L41/08Piezo-electric or electrostrictive devices
    • H01L41/09Piezo-electric or electrostrictive devices with electrical input and mechanical output, e.g. actuators, vibrators
    • H01L41/0926Piezo-electric or electrostrictive devices with electrical input and mechanical output, e.g. actuators, vibrators using bending displacement, e.g. unimorph, bimorph or multimorph cantilever or membrane benders
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L41/00Piezo-electric devices in general; Electrostrictive devices in general; Magnetostrictive devices in general; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L41/02Details
    • H01L41/04Details of piezo-electric or electrostrictive devices
    • H01L41/053Mounts, supports, enclosures or casings
    • H01L41/0536Mechanical prestressing means, e.g. springs
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L41/00Piezo-electric devices in general; Electrostrictive devices in general; Magnetostrictive devices in general; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L41/16Selection of materials
    • H01L41/18Selection of materials for piezo-electric or electrostrictive devices, e.g. bulk piezo-electric crystals
    • H01L41/187Ceramic compositions, i.e. synthetic inorganic polycrystalline compounds incl. epitaxial, quasi-crystalline materials
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L41/00Piezo-electric devices in general; Electrostrictive devices in general; Magnetostrictive devices in general; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L41/08Piezo-electric or electrostrictive devices
    • H01L41/083Piezo-electric or electrostrictive devices having a stacked or multilayer structure
    • H01L41/0836Piezo-electric or electrostrictive devices having a stacked or multilayer structure of cylindrical shape with stacking in radial direction, e.g. coaxial or spiral type rolls
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L41/00Piezo-electric devices in general; Electrostrictive devices in general; Magnetostrictive devices in general; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L41/08Piezo-electric or electrostrictive devices
    • H01L41/09Piezo-electric or electrostrictive devices with electrical input and mechanical output, e.g. actuators, vibrators
    • H01L41/0986Piezo-electric or electrostrictive devices with electrical input and mechanical output, e.g. actuators, vibrators using longitudinal or thickness displacement only, e.g. d33 or d31 type devices
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L41/00Piezo-electric devices in general; Electrostrictive devices in general; Magnetostrictive devices in general; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L41/08Piezo-electric or electrostrictive devices
    • H01L41/113Piezo-electric or electrostrictive devices with mechanical input and electrical output, e.g. generators, sensors
    • H01L41/1132Sensors
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L41/00Piezo-electric devices in general; Electrostrictive devices in general; Magnetostrictive devices in general; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L41/22Processes or apparatus specially adapted for the assembly, manufacture or treatment of piezo-electric or electrostrictive devices or of parts thereof
    • H01L41/253Treating devices or parts thereof to modify a piezo-electric or electrostrictive property, e.g. polarisation characteristics, vibration characteristics or mode tuning
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L41/00Piezo-electric devices in general; Electrostrictive devices in general; Magnetostrictive devices in general; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L41/22Processes or apparatus specially adapted for the assembly, manufacture or treatment of piezo-electric or electrostrictive devices or of parts thereof
    • H01L41/33Shaping or machining of piezo-electric or electrostrictive bodies

Similar Documents

Publication Publication Date Title
Kakimoto et al. Fabrication of fibrous BaTiO3-reinforced PVDF composite sheet for transducer application
US6512323B2 (en) Piezoelectric actuator device
JP5318761B2 (en) Piezoelectric ceramic planar actuator and method of manufacturing the planar actuator
Trindade et al. Finite element homogenization technique for the characterization ofd15 shear piezoelectric macro-fibre composites
Wilkie et al. Reliability testing of NASA piezocomposite actuators
Lin et al. The influence of structural parameters on the actuation performance of piezoelectric fiber composites
Schäffner et al. Microstructured single-layer electrodes embedded in P (VDF-TrFE) for flexible and self-powered direction-sensitive strain sensors
Wilkie et al. Anisotropic laminar piezocomposite actuator incorporating machined PMN–PT single-crystal fibers
Liu et al. Calculations of giant magnetoelectric effect in multiferroic composites of rare-earth-iron alloys and PZT by finite element method
Yao et al. Nonlinear extension and bending of piezoelectric laminated plate under large applied fieldactuation
US20080211353A1 (en) High temperature bimorph actuator
Huber et al. Active fiber composites: optimization of the manufacturing process and their poling behavior
Baz et al. Active piezoelectric damping composites
KR20210007857A (en) Piezoelectric composite, method of manufacturing the same, and magnetoelectric laminate structure having the same
Almajid et al. Fabrication and modeling of porous FGM piezoelectric actuators
Webber et al. Application of a classical lamination theory model to the design of piezoelectric composite unimorph actuators
Kang et al. Energy harvesting using ferroelectric/ferroelastic switching: the effect of pre-poling
Lesieutre et al. Transfer having a coupling coefficient higher than its active material
Wilkie et al. Anisotropic piezocomposite actuator incorporating machined PMN-PT single crystal fibers
Gusarov et al. Flexible composite thermal energy harvester using piezoelectric PVDF polymer and shape memory alloy
Yuan et al. Mechanical performance of piezoelectric fiber composites and electroelastic field concentration near the electrode edges
JP2022504043A (en) Shear piezoelectric transducer
Reddy et al. Deformations of piezothermoelastic laminates with internal electrodes
US20100133957A1 (en) Piezo actuator with increased displacement capacity
Saravanan et al. Characteristic investigation of macro fiber composite structure using FE model