Sedighi et al., 2012 - Google Patents
Design of hybrid resistive-capacitive DAC for SAR A/D convertersSedighi et al., 2012
- Document ID
- 12526125119086639421
- Author
- Sedighi B
- Huynh A
- Skafidas E
- Micusik D
- Publication year
- Publication venue
- 2012 19th IEEE International Conference on Electronics, Circuits, and Systems (ICECS 2012)
External Links
Snippet
While hybrid capacitive-resistive D/A Converter (DAC) has been known for many years, its potential for energy-efficient operation is sometimes overlooked. This paper investigates the utilization of hybrid DACs in successive-approximation register A/D converters. To improve …
- 229920005994 diacetyl cellulose 0 title abstract description 99
Classifications
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M1/00—Analogue/digital conversion; Digital/analogue conversion
- H03M1/12—Analogue/digital converters
- H03M1/34—Analogue value compared with reference values
- H03M1/38—Analogue value compared with reference values sequentially only, e.g. successive approximation type
- H03M1/46—Analogue value compared with reference values sequentially only, e.g. successive approximation type with digital/analogue converter for supplying reference values to converter
- H03M1/466—Analogue value compared with reference values sequentially only, e.g. successive approximation type with digital/analogue converter for supplying reference values to converter using switched capacitors
- H03M1/468—Analogue value compared with reference values sequentially only, e.g. successive approximation type with digital/analogue converter for supplying reference values to converter using switched capacitors in which the input S/H circuit is merged with the feedback DAC array
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M1/00—Analogue/digital conversion; Digital/analogue conversion
- H03M1/12—Analogue/digital converters
- H03M1/34—Analogue value compared with reference values
- H03M1/36—Analogue value compared with reference values simultaneously only, i.e. parallel type
- H03M1/361—Analogue value compared with reference values simultaneously only, i.e. parallel type having a separate comparator and reference value for each quantisation level, i.e. full flash converter type
- H03M1/362—Analogue value compared with reference values simultaneously only, i.e. parallel type having a separate comparator and reference value for each quantisation level, i.e. full flash converter type the reference values being generated by a resistive voltage divider
- H03M1/365—Analogue value compared with reference values simultaneously only, i.e. parallel type having a separate comparator and reference value for each quantisation level, i.e. full flash converter type the reference values being generated by a resistive voltage divider the voltage divider being a single resistor string
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M1/00—Analogue/digital conversion; Digital/analogue conversion
- H03M1/66—Digital/analogue converters
- H03M1/74—Simultaneous conversion
- H03M1/80—Simultaneous conversion using weighted impedances
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M1/00—Analogue/digital conversion; Digital/analogue conversion
- H03M1/06—Continuously compensating for, or preventing, undesired influence of physical parameters
- H03M1/0617—Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence
- H03M1/0675—Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence using redundancy
- H03M1/0678—Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence using redundancy using additional components or elements, e.g. dummy components
- H03M1/068—Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence using redundancy using additional components or elements, e.g. dummy components the original and additional components or elements being complementary to each other, e.g. CMOS
- H03M1/0682—Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence using redundancy using additional components or elements, e.g. dummy components the original and additional components or elements being complementary to each other, e.g. CMOS using a differential network structure, i.e. symmetrical with respect to ground
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M1/00—Analogue/digital conversion; Digital/analogue conversion
- H03M1/06—Continuously compensating for, or preventing, undesired influence of physical parameters
- H03M1/0617—Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence
- H03M1/0634—Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence by averaging out the errors, e.g. using sliding scale
- H03M1/0656—Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence by averaging out the errors, e.g. using sliding scale in the time domain
- H03M1/066—Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence by averaging out the errors, e.g. using sliding scale in the time domain by continuously permuting the elements used, i.e. dynamic element matching
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M1/00—Analogue/digital conversion; Digital/analogue conversion
- H03M1/12—Analogue/digital converters
- H03M1/34—Analogue value compared with reference values
- H03M1/38—Analogue value compared with reference values sequentially only, e.g. successive approximation type
- H03M1/40—Analogue value compared with reference values sequentially only, e.g. successive approximation type recirculation type
- H03M1/403—Analogue value compared with reference values sequentially only, e.g. successive approximation type recirculation type using switched capacitors
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M1/00—Analogue/digital conversion; Digital/analogue conversion
- H03M1/66—Digital/analogue converters
- H03M1/68—Digital/analogue converters with conversions of different sensitivity, i.e. one conversion relating to the more significant digital bits and another conversion to the less significant bits
- H03M1/682—Digital/analogue converters with conversions of different sensitivity, i.e. one conversion relating to the more significant digital bits and another conversion to the less significant bits both converters being of the unary decoded type
- H03M1/685—Digital/analogue converters with conversions of different sensitivity, i.e. one conversion relating to the more significant digital bits and another conversion to the less significant bits both converters being of the unary decoded type the quantisation value generators of both converters being arranged in a common two-dimensional array
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M1/00—Analogue/digital conversion; Digital/analogue conversion
- H03M1/12—Analogue/digital converters
- H03M1/14—Conversion in steps with each step involving the same or a different conversion means and delivering more than one bit
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M1/00—Analogue/digital conversion; Digital/analogue conversion
- H03M1/06—Continuously compensating for, or preventing, undesired influence of physical parameters
- H03M1/08—Continuously compensating for, or preventing, undesired influence of physical parameters of noise
- H03M1/0836—Continuously compensating for, or preventing, undesired influence of physical parameters of noise of phase error, e.g. jitter
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M1/00—Analogue/digital conversion; Digital/analogue conversion
- H03M1/10—Calibration or testing
- H03M1/1009—Calibration
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M1/00—Analogue/digital conversion; Digital/analogue conversion
- H03M1/10—Calibration or testing
- H03M1/1004—Calibration or testing without interrupting normal operation, e.g. by providing an additional component for temporarily replacing components to be tested or calibrated
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M1/00—Analogue/digital conversion; Digital/analogue conversion
- H03M1/004—Reconfigurable analogue/digital or digital/analogue converters
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K3/00—Circuits for generating electric pulses; Monostable, bistable or multistable circuits
- H03K3/02—Generators characterised by the type of circuit or by the means used for producing pulses
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Sedighi et al. | Design of hybrid resistive-capacitive DAC for SAR A/D converters | |
| Nam et al. | A 12-bit 1.6, 3.2, and 6.4 GS/s 4-b/cycle time-interleaved SAR ADC with dual reference shifting and interpolation | |
| Ginsburg et al. | 500-MS/s 5-bit ADC in 65-nm CMOS with split capacitor array DAC | |
| Hong et al. | A decision-error-tolerant 45 nm CMOS 7b 1 GS/s nonbinary 2b/cycle SAR ADC | |
| Zhang et al. | Noise modeling and analysis of SAR ADCs | |
| Cho et al. | A 9-bit 80 MS/s successive approximation register analog-to-digital converter with a capacitor reduction technique | |
| Chang et al. | A 28-nm 10-b 2.2-GS/s 18.2-mW relative-prime time-interleaved sub-ranging SAR ADC with on-chip background skew calibration | |
| Hsieh et al. | A 0.3-V 0.705-fJ/conversion-step 10-bit SAR ADC with a shifted monotonic switching procedure in 90-nm CMOS | |
| TW201141072A (en) | Capacitive voltage divider | |
| Lu et al. | A 10-bits 50-MS/s SAR ADC based on area-efficient and low-energy switching scheme | |
| Saberi et al. | Segmented architecture for successive approximation analog-to-digital converters | |
| Matsuura | Recent progress on CMOS successive approximation ADCs | |
| Kim et al. | A 12-bit 200-ks/s sar adc with hybrid rc dac | |
| Cai et al. | A 25 GS/s 6b TI two-stage multi-bit search ADC with soft-decision selection algorithm in 65 nm CMOS | |
| Ahmadi et al. | Comparator power reduction in low-frequency SAR ADC using optimized vote allocation | |
| Fang et al. | A 2.56-GS/s 12-bit 8x-interleaved ADC with 156.6-dB FoM s in 65-nm CMOS | |
| Chung et al. | A 12‐bit 10‐MS/s SAR ADC with a binary‐window DAC switching scheme in 180‐nm CMOS | |
| Singh et al. | Power efficient SAR ADC designed in 90 nm CMOS technology | |
| Ghasemi et al. | A low-power capacitor switching scheme with low common-mode voltage variation for successive approximation ADC | |
| Ha et al. | A 0.5-V, 1.47-$\mu\hbox {W} $40-kS/s 13-bit SAR ADC With Capacitor Error Compensation | |
| Wu et al. | A 960 μW 10-bit 70-MS/s SAR ADC with an energy-efficient capacitor-switching scheme | |
| Samadpoor Rikan et al. | A 6‐bit 4 MS/s 26fJ/conversion‐step segmented SAR ADC with reduced switching energy for BLE | |
| Lai | A 10-bit 40 MS/s successive approximation register analog-to-digital converter with Vcm-based method for wireless communications | |
| Huynh et al. | Design and implementation of an 11-bit 50-MS/s split SAR ADC in 65 nm CMOS | |
| Chen et al. | An 8.2 fJ/conversion-step 9-bit 135 MS/s SAR ADC with redundant methods for acceleration |