[go: up one dir, main page]

Adachi et al., 2003 - Google Patents

Three dimensionally configured SQUID vector gradiometers for biomagnetic measurement

Adachi et al., 2003

Document ID
12767200819687569961
Author
Adachi Y
Kawai J
Miyamoto M
Uehara G
Kawabata S
Okubo H
Fukuoka Y
Komori H
Publication year
Publication venue
Superconductor Science and Technology

External Links

Snippet

We proposed a composite superconducting quantum interference devices (SQUIDs) gradiometer with an axial-type gradiometric pick-up coil and two planar-type gradiometric pick-up coils. Three gradiometers are built into a single module in orthogonal position to …
Continue reading at iopscience.iop.org (other versions)

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/32Excitation or detection systems, e.g. using radio frequency signals
    • G01R33/34Constructional details, e.g. resonators, specially adapted to MR
    • G01R33/341Constructional details, e.g. resonators, specially adapted to MR comprising surface coils
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/54Signal processing systems, e.g. using pulse sequences, Generation or control of pulse sequences ; Operator Console
    • G01R33/56Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
    • G01R33/567Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution gated by physiological signals, i.e. synchronization of acquired MR data with periodical motion of an object of interest, e.g. monitoring or triggering system for cardiac or respiratory gating
    • G01R33/5673Gating or triggering based on a physiological signal other than an MR signal, e.g. ECG gating or motion monitoring using optical systems for monitoring the motion of a fiducial marker
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/4806Functional imaging of brain activation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/035Measuring direction or magnitude of magnetic fields or magnetic flux using superconductive devices
    • G01R33/0354SQUIDS
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/288Provisions within MR facilities for enhancing safety during MR, e.g. reduction of the specific absorption rate [SAR], detection of ferromagnetic objects in the scanner room
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radiowaves
    • A61B5/055Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radiowaves involving electronic or nuclear magnetic resonance, e.g. magnetic resonance imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/04Detecting, measuring or recording bioelectric signals of the body of parts thereof
    • A61B5/04005Detecting magnetic fields produced by bio-electric currents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7271Specific aspects of physiological measurement analysis
    • A61B5/7285Specific aspects of physiological measurement analysis for synchronising or triggering a physiological measurement or image acquisition with a physiological event or waveform, e.g. an ECG signal
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/04Detecting, measuring or recording bioelectric signals of the body of parts thereof
    • A61B5/0402Electrocardiography, i.e. ECG
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/41Detecting, measuring or recording for evaluating the immune or lymphatic systems

Similar Documents

Publication Publication Date Title
Sternickel et al. Biomagnetism using SQUIDs: status and perspectives
Kado et al. Magnetoencephalogram systems developed at KIT
US6665553B2 (en) Biomagnetic field measuring apparatus using squid magnetometers for evaluating a rotational property of a current in a subject
US20070038067A1 (en) Living body inspection apparatus
US20150150475A1 (en) Magnetometer for medical use
US20020173714A1 (en) Biomagnetic field measuring method and apparatus
Ilmoniemi et al. A four-channel SQUID magnetometer for brain research
Okada et al. BabySQUID: a mobile, high-resolution multichannel magnetoencephalography system for neonatal brain assessment
Adachi et al. Calibration of room temperature magnetic sensor array for biomagnetic measurement
Adachi et al. Three dimensionally configured SQUID vector gradiometers for biomagnetic measurement
Uehara et al. Multi-channel SQUID systems for biomagnetic measurement
Adachi 足立 善昭 et al. Multichannel SQUID magnetoneurograph system for functional imaging of spinal cords and peripheral nerves
Nowak Biomagnetic instrumentation
Papanicolaou An introduction to magnetoencephalography with some applications
Adachi et al. A SQUID system for measurement of spinal cord evoked field of supine subjects
JP3067728B2 (en) Biomagnetic field measurement device
Adachi et al. A SQUID biomagnetometer system for measurement of spinal cord evoked magnetic fields
Adachi et al. Biomagnetic measurement system for supine subjects with expanded sensor array and real-time noise reduction
Mapps Remote magnetic sensing of people
Carelli et al. Biomagnetism: an application of superconductivity
JP2001087237A (en) Living body magnetic field measuring method
Adachi et al. Simultaneous measurements of magnetomyographic and magnetocardiographic signals using SQUIDs and relocatable magnetoresistive-device-based flux sensors
Lee et al. Double relaxation oscillation SQUID systems for biomagnetic multichannel measurements
Adachi et al. Multichannel SQUID system for measurement of spinal cord evoked magnetic field for supine subjects
JP3233127B2 (en) Biomagnetic field measurement device