Tiwari, 2022 - Google Patents
Supervised machine learning: a brief introductionTiwari, 2022
View PDF- Document ID
- 13042703100368504957
- Author
- Tiwari S
- Publication year
- Publication venue
- Proceedings of the International Conference on Virtual Learning
External Links
Snippet
Machine learning is being employed more and more in psychological research, and it can enhance our knowledge of how to categorise, anticipate, and treat psychosomatic illnesses and the negative health effects that go along with them. Machine learning provides new …
- 238000010801 machine learning 0 title abstract description 56
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/6267—Classification techniques
- G06K9/6279—Classification techniques relating to the number of classes
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/6267—Classification techniques
- G06K9/6268—Classification techniques relating to the classification paradigm, e.g. parametric or non-parametric approaches
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/30—Information retrieval; Database structures therefor; File system structures therefor
- G06F17/3061—Information retrieval; Database structures therefor; File system structures therefor of unstructured textual data
- G06F17/30705—Clustering or classification
- G06F17/3071—Clustering or classification including class or cluster creation or modification
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/6217—Design or setup of recognition systems and techniques; Extraction of features in feature space; Clustering techniques; Blind source separation
- G06K9/6228—Selecting the most significant subset of features
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N99/00—Subject matter not provided for in other groups of this subclass
- G06N99/005—Learning machines, i.e. computer in which a programme is changed according to experience gained by the machine itself during a complete run
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/6217—Design or setup of recognition systems and techniques; Extraction of features in feature space; Clustering techniques; Blind source separation
- G06K9/6232—Extracting features by transforming the feature space, e.g. multidimensional scaling; Mappings, e.g. subspace methods
- G06K9/6247—Extracting features by transforming the feature space, e.g. multidimensional scaling; Mappings, e.g. subspace methods based on an approximation criterion, e.g. principal component analysis
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F19/00—Digital computing or data processing equipment or methods, specially adapted for specific applications
- G06F19/30—Medical informatics, i.e. computer-based analysis or dissemination of patient or disease data
- G06F19/34—Computer-assisted medical diagnosis or treatment, e.g. computerised prescription or delivery of medication or diets, computerised local control of medical devices, medical expert systems or telemedicine
- G06F19/345—Medical expert systems, neural networks or other automated diagnosis
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N5/00—Computer systems utilising knowledge based models
- G06N5/02—Knowledge representation
- G06N5/022—Knowledge engineering, knowledge acquisition
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F19/00—Digital computing or data processing equipment or methods, specially adapted for specific applications
- G06F19/30—Medical informatics, i.e. computer-based analysis or dissemination of patient or disease data
- G06F19/32—Medical data management, e.g. systems or protocols for archival or communication of medical images, computerised patient records or computerised general medical references
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/30—Information retrieval; Database structures therefor; File system structures therefor
- G06F17/30286—Information retrieval; Database structures therefor; File system structures therefor in structured data stores
- G06F17/30587—Details of specialised database models
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N7/00—Computer systems based on specific mathematical models
- G06N7/005—Probabilistic networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computer systems based on biological models
- G06N3/02—Computer systems based on biological models using neural network models
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F19/00—Digital computing or data processing equipment or methods, specially adapted for specific applications
- G06F19/10—Bioinformatics, i.e. methods or systems for genetic or protein-related data processing in computational molecular biology
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N5/00—Computer systems utilising knowledge based models
- G06N5/04—Inference methods or devices
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F15/00—Digital computers in general; Data processing equipment in general
- G06F15/18—Digital computers in general; Data processing equipment in general in which a programme is changed according to experience gained by the computer itself during a complete run; Learning machines
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Zubair Hasan et al. | Performance evaluation of ensemble-based machine learning techniques for prediction of chronic kidney disease | |
| US7117185B1 (en) | Method, system, and apparatus for casual discovery and variable selection for classification | |
| Sossi Alaoui et al. | A comparative study of the four well-known classification algorithms in data mining | |
| Kadhim et al. | A novel voice classification based on Gower distance for Parkinson disease detection | |
| Tiwari | Supervised machine learning: a brief introduction | |
| Awe et al. | Weighted hard and soft voting ensemble machine learning classifiers: Application to anaemia diagnosis | |
| Zamzami et al. | Machine learning algorithms for smart and intelligent healthcare system in Society 5.0 | |
| MS et al. | A survey on detecting healthcare concept drift in AI/ML models from a finance perspective | |
| Sossi Alaoui et al. | Data mining and machine learning approaches and technologies for diagnosing diabetes in women | |
| Dhiyanesh et al. | Cloud computing and machine learning for analysis of health care data based on neuro fuzzy logistic regression | |
| Strilets et al. | Agent-oriented data clustering for medical monitoring | |
| Adelodun et al. | Explainable artificial intelligence with scaling techniques to classify breast cancer images | |
| Ramdhani et al. | Heart failure prediction based on random forest algorithm using genetic algorithm for feature selection | |
| Panda et al. | Heart disease prediction: A comparative analysis of machine learning algorithms | |
| Gupta et al. | Machine learning algorithms | |
| Khaled et al. | Evaluating machine learning models for predictive analytics of liver disease detection using healthcare big data | |
| Ragunthar et al. | Classification of gene expression data with optimized feature selection | |
| Tran et al. | Random subspace ensemble for directly classifying high-dimensional incomplete data | |
| Shinde et al. | Experimental Analysis of Heart Disease Prediction Using Machine Learning with Emphasis on Hyper Parameter Tuning and Recursive Feature Elimination. | |
| Thakkar et al. | Kidney Disease: Early-Stage Identification and Prevention Using Supervised Machine Learning Techniques | |
| Al-Hameli et al. | Prediction of diabetes using hidden Naïve Bayes: comparative study | |
| Gupta et al. | Unraveling the Potential of Machine Learning in Lung Cancer Prediction | |
| Yousefi et al. | Comparison of result of machine learning algorithms in predicting heart disease. | |
| Banu et al. | A mobile/desktop medical application for automatic differential diagnosis of psoriasis lesions | |
| Gautam et al. | A review paper on machine learning techniques and its applications in health care sector |