Park et al., 2021 - Google Patents
Combined oversampling and undersampling method based on slow-start algorithm for imbalanced network trafficPark et al., 2021
- Document ID
- 13057666389185352291
- Author
- Park S
- Park H
- Publication year
- Publication venue
- Computing
External Links
Snippet
Network traffic data basically comprise a major amount of normal traffic data and a minor amount of attack data. Such an imbalance problem in the amounts of the two types of data reduces prediction performance, such as by prediction bias of the minority data and …
- 238000004422 calculation algorithm 0 title abstract description 83
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N99/00—Subject matter not provided for in other groups of this subclass
- G06N99/005—Learning machines, i.e. computer in which a programme is changed according to experience gained by the machine itself during a complete run
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/6267—Classification techniques
- G06K9/6279—Classification techniques relating to the number of classes
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/6267—Classification techniques
- G06K9/6268—Classification techniques relating to the classification paradigm, e.g. parametric or non-parametric approaches
- G06K9/6269—Classification techniques relating to the classification paradigm, e.g. parametric or non-parametric approaches based on the distance between the decision surface and training patterns lying on the boundary of the class cluster, e.g. support vector machines
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/30—Information retrieval; Database structures therefor; File system structures therefor
- G06F17/3061—Information retrieval; Database structures therefor; File system structures therefor of unstructured textual data
- G06F17/30705—Clustering or classification
- G06F17/3071—Clustering or classification including class or cluster creation or modification
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/6217—Design or setup of recognition systems and techniques; Extraction of features in feature space; Clustering techniques; Blind source separation
- G06K9/6228—Selecting the most significant subset of features
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/6217—Design or setup of recognition systems and techniques; Extraction of features in feature space; Clustering techniques; Blind source separation
- G06K9/6261—Design or setup of recognition systems and techniques; Extraction of features in feature space; Clustering techniques; Blind source separation partitioning the feature space
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/6217—Design or setup of recognition systems and techniques; Extraction of features in feature space; Clustering techniques; Blind source separation
- G06K9/6232—Extracting features by transforming the feature space, e.g. multidimensional scaling; Mappings, e.g. subspace methods
- G06K9/6247—Extracting features by transforming the feature space, e.g. multidimensional scaling; Mappings, e.g. subspace methods based on an approximation criterion, e.g. principal component analysis
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N5/00—Computer systems utilising knowledge based models
- G06N5/02—Knowledge representation
- G06N5/022—Knowledge engineering, knowledge acquisition
- G06N5/025—Extracting rules from data
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computer systems based on biological models
- G06N3/02—Computer systems based on biological models using neural network models
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/68—Methods or arrangements for recognition using electronic means using sequential comparisons of the image signals with a plurality of references in which the sequence of the image signals or the references is relevant, e.g. addressable memory
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N5/00—Computer systems utilising knowledge based models
- G06N5/04—Inference methods or devices
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/36—Image preprocessing, i.e. processing the image information without deciding about the identity of the image
- G06K9/46—Extraction of features or characteristics of the image
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N7/00—Computer systems based on specific mathematical models
- G06N7/005—Probabilistic networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F15/00—Digital computers in general; Data processing equipment in general
- G06F15/18—Digital computers in general; Data processing equipment in general in which a programme is changed according to experience gained by the computer itself during a complete run; Learning machines
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06Q—DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q40/00—Finance; Insurance; Tax strategies; Processing of corporate or income taxes
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Park et al. | Combined oversampling and undersampling method based on slow-start algorithm for imbalanced network traffic | |
| Tanha et al. | Boosting methods for multi-class imbalanced data classification: an experimental review | |
| Dlamini et al. | DGM: a data generative model to improve minority class presence in anomaly detection domain | |
| Tran et al. | Machine learning for prediction of imbalanced data: Credit fraud detection | |
| Cao et al. | DriftShield: Autonomous fraud detection via actor-critic reinforcement learning with dynamic feature reweighting | |
| Lu et al. | An improved weighted extreme learning machine for imbalanced data classification | |
| Artetxe et al. | Balanced training of a hybrid ensemble method for imbalanced datasets: a case of emergency department readmission prediction | |
| Elyassami et al. | Fake news detection using ensemble learning and machine learning algorithms | |
| Kim et al. | Incorporating receiver operating characteristics into naive Bayes for unbalanced data classification | |
| Hassanat et al. | Magnetic force classifier: a novel method for big data classification | |
| Waqas et al. | Simultaneous instance pooling and bag representation selection approach for multiple-instance learning (MIL) using vision transformer | |
| Xu et al. | [Retracted] Application Analysis of the Machine Learning Fusion Model in Building a Financial Fraud Prediction Model | |
| Wang et al. | [Retracted] intrusion detection for industrial control systems based on open set artificial neural network | |
| Saha et al. | Genetic algorithm combined with support vector machine for building an intrusion detection system | |
| Das et al. | A comprehensive analysis of accuracies of machine learning algorithms for network intrusion detection | |
| Preethi et al. | Sparse auto encoder driven support vector regression based deep learning model for predicting network intrusions | |
| Dey et al. | A new random forest and support vector machine-based intrusion detection model in networks | |
| Rekha et al. | An Earth mover's distance-based undersampling approach for handling class-imbalanced data | |
| Zulfiqar et al. | DeepDetect: An innovative hybrid deep learning framework for anomaly detection in IoT networks | |
| Xie et al. | Instance hardness and multivariate Gaussian distribution-based oversampling technique for imbalance classification | |
| Choi et al. | Meta-learning with topic-agnostic representations for zero-shot stance detection | |
| Sourabh et al. | A review of credit card fraud detection techniques | |
| Di et al. | Learning automata based SVM for intrusion detection | |
| Wang et al. | Feature reduction of unbalanced data classification based on density clustering | |
| Abdeldayem | Intrusion detection system based on pattern recognition |