[go: up one dir, main page]

Jedrzejewski et al., 2004 - Google Patents

Bragg gratings in optical fibers made by the phase mask method

Jedrzejewski et al., 2004

Document ID
13114493361434418571
Author
Jedrzejewski K
Lewandowski L
Helsztynski J
Jasiewicz W
Publication year
Publication venue
Lightguides and their Applications II

External Links

Snippet

A fiber Bragg grating is a very attractive passive device widely used in telecommunication networks, laser technologies, metrology and research laboratories. The Institute of Electronics Systems has recently opened the new laboratory for writing Bragg gratings …
Continue reading at www.spiedigitallibrary.org (other versions)

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
    • G02B6/00Light guides
    • G02B6/02Optical fibre with cladding with or without a coating
    • G02B6/02057Optical fibre with cladding with or without a coating comprising gratings
    • G02B6/02076Refractive index modulation gratings, e.g. Bragg gratings
    • G02B6/02123Refractive index modulation gratings, e.g. Bragg gratings characterised by the method of manufacture of the grating
    • G02B6/02133Refractive index modulation gratings, e.g. Bragg gratings characterised by the method of manufacture of the grating using beam interference
    • G02B6/02138Refractive index modulation gratings, e.g. Bragg gratings characterised by the method of manufacture of the grating using beam interference based on illuminating a phase mask
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
    • G02B6/00Light guides
    • G02B6/02Optical fibre with cladding with or without a coating
    • G02B6/02057Optical fibre with cladding with or without a coating comprising gratings
    • G02B6/02076Refractive index modulation gratings, e.g. Bragg gratings
    • G02B6/02123Refractive index modulation gratings, e.g. Bragg gratings characterised by the method of manufacture of the grating
    • G02B6/02152Refractive index modulation gratings, e.g. Bragg gratings characterised by the method of manufacture of the grating involving moving the fibre or a manufacturing element, stretching of the fibre
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
    • G02B6/00Light guides
    • G02B6/02Optical fibre with cladding with or without a coating
    • G02B6/02057Optical fibre with cladding with or without a coating comprising gratings
    • G02B6/02076Refractive index modulation gratings, e.g. Bragg gratings
    • G02B6/0208Refractive index modulation gratings, e.g. Bragg gratings characterised by their structure, wavelength response
    • G02B6/02085Refractive index modulation gratings, e.g. Bragg gratings characterised by their structure, wavelength response characterised by the grating profile, e.g. chirped, apodised, tilted, helical
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
    • G02B6/00Light guides
    • G02B6/02Optical fibre with cladding with or without a coating
    • G02B6/02057Optical fibre with cladding with or without a coating comprising gratings
    • G02B6/02076Refractive index modulation gratings, e.g. Bragg gratings
    • G02B6/02123Refractive index modulation gratings, e.g. Bragg gratings characterised by the method of manufacture of the grating
    • G02B2006/02161Grating written by radiation passing through the protective fibre coating
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
    • G02B6/00Light guides
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01SDEVICES USING STIMULATED EMISSION
    • H01S3/00Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves
    • H01S3/05Construction or shape of optical resonators; Accomodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06708Constructional details of the fibre, e.g. compositions, cross-section, shape or tapering
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01SDEVICES USING STIMULATED EMISSION
    • H01S3/00Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves
    • H01S3/05Construction or shape of optical resonators; Accomodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/0675Resonators including a grating structure, e.g. distributed Bragg reflectors [DBR] or distributed feedback [DFB] fibre lasers
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01SDEVICES USING STIMULATED EMISSION
    • H01S3/00Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves
    • H01S3/05Construction or shape of optical resonators; Accomodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06754Fibre amplifiers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
    • G02B6/00Light guides
    • G02B6/10Light guides of the optical waveguide type
    • G02B6/12Light guides of the optical waveguide type of the integrated circuit kind

Similar Documents

Publication Publication Date Title
Russell et al. Fibre gratings
JP4414344B2 (en) Fabrication of waveguides and Bragg gratings by UV radiation
Bhatia Properties and sensing applications of long-period gratings
US6130973A (en) Method and apparatus for spectrally designing all-fiber filters
Zychowicz et al. Methods of producing apodized fiber Bragg gratings and examples of their applications
EP0817981A1 (en) Method of writing photosensitive grating using lloyd's mirror
Abdullina et al. Suppression of side lobes in the fiber Bragg grating reflection spectrum
Othonos et al. Spectrally broadband Bragg grating mirror for an erbium-doped fiber laser
Jedrzejewski et al. Bragg gratings in optical fibers made by the phase mask method
Novikova et al. Experimental investigation and simulation of phase-shifted fiber Bragg gratings
Malo et al. Photosensitivity in optical fiber and silica-on-substrate waveguides
Archambault Photorefractive gratings in optical fibres
Loranger Discovery and Correction of Spatial Non-Uniformity in Optical Fibers: Towards the Fabrication of Perfect Ultra-Long Fiber Bragg Gratings for Applications in Non-Linear Optics
Marques Fiber-optic components for optical communicatios and sensing
Mayer et al. Fiber Bragg grating writing by interferometric or phase-mask methods using high-power excimer lasers
Huebner et al. Phenomenological model of UV-induced Bragg grating growth in germanosilicate fibers
Mizunami et al. A flexible fabrication technique of long-period fiber gratings using a tilted amplitude mask
Helsztynski et al. Fiber Bragg gratings: technology and measurement
Yakimuk et al. Research of fiber Bragg gratings inscription by the method of translation of a laser beam relative to a phase mask
Helsztynski et al. Interferometric fiber Bragg gratings
Gunawardena Photosensitivity, Grating Strength and Thermal Endurance of Fibre Bragg Gratings
Chisholm Fabrication and application of short and novel structure in-fibre Bragg gratings
Wikszak et al. Inscribing fiber Bragg gratings using IR-fs pulses and a phase-mask scanning technique: potential and applications
CA2230200C (en) Method and apparatus for spectrally designing all-fiber filters
Pal Characterisation and high-temperature sensing potential of fibre Bragg gratings in specialised optical fibres