Kanwal et al., 2020 - Google Patents
Large Scale Hierarchical Anomaly Detection and Temporal LocalizationKanwal et al., 2020
- Document ID
- 13686776923961792770
- Author
- Kanwal S
- Mehta V
- Dhall A
- Publication year
- Publication venue
- Proceedings of the 28th ACM International Conference on Multimedia
External Links
Snippet
Abnormal event detection is a non-trivial task in machine learning. The primary reason behind this is that the abnormal class occurs sparsely, and its temporal location may not be available. In this paper, we propose a multiple feature-based approach for CitySCENE …
- 238000001514 detection method 0 title abstract description 43
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/6267—Classification techniques
- G06K9/6268—Classification techniques relating to the classification paradigm, e.g. parametric or non-parametric approaches
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/6217—Design or setup of recognition systems and techniques; Extraction of features in feature space; Clustering techniques; Blind source separation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/30—Information retrieval; Database structures therefor; File system structures therefor
- G06F17/30781—Information retrieval; Database structures therefor; File system structures therefor of video data
- G06F17/30784—Information retrieval; Database structures therefor; File system structures therefor of video data using features automatically derived from the video content, e.g. descriptors, fingerprints, signatures, genre
- G06F17/30799—Information retrieval; Database structures therefor; File system structures therefor of video data using features automatically derived from the video content, e.g. descriptors, fingerprints, signatures, genre using low-level visual features of the video content
- G06F17/30811—Information retrieval; Database structures therefor; File system structures therefor of video data using features automatically derived from the video content, e.g. descriptors, fingerprints, signatures, genre using low-level visual features of the video content using motion, e.g. object motion, camera motion
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/00624—Recognising scenes, i.e. recognition of a whole field of perception; recognising scene-specific objects
- G06K9/00771—Recognising scenes under surveillance, e.g. with Markovian modelling of scene activity
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/00624—Recognising scenes, i.e. recognition of a whole field of perception; recognising scene-specific objects
- G06K9/00711—Recognising video content, e.g. extracting audiovisual features from movies, extracting representative key-frames, discriminating news vs. sport content
- G06K9/00718—Higher-level, semantic clustering, classification or understanding of video scenes, e.g. detection, labelling or Markovian modelling of sport events or news items
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/00221—Acquiring or recognising human faces, facial parts, facial sketches, facial expressions
- G06K9/00288—Classification, e.g. identification
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/00221—Acquiring or recognising human faces, facial parts, facial sketches, facial expressions
- G06K9/00268—Feature extraction; Face representation
- G06K9/00281—Local features and components; Facial parts ; Occluding parts, e.g. glasses; Geometrical relationships
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/68—Methods or arrangements for recognition using electronic means using sequential comparisons of the image signals with a plurality of references in which the sequence of the image signals or the references is relevant, e.g. addressable memory
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/36—Image preprocessing, i.e. processing the image information without deciding about the identity of the image
- G06K9/46—Extraction of features or characteristics of the image
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/00335—Recognising movements or behaviour, e.g. recognition of gestures, dynamic facial expressions; Lip-reading
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/00362—Recognising human body or animal bodies, e.g. vehicle occupant, pedestrian; Recognising body parts, e.g. hand
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N99/00—Subject matter not provided for in other groups of this subclass
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F21/00—Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Liu et al. | Exploring background-bias for anomaly detection in surveillance videos | |
| Zhou et al. | Attention-driven loss for anomaly detection in video surveillance | |
| Cho et al. | Look around for anomalies: Weakly-supervised anomaly detection via context-motion relational learning | |
| Fu et al. | Automatic fight detection in surveillance videos | |
| Suarez et al. | A survey on deep learning techniques for video anomaly detection | |
| Rendón-Segador et al. | Crimenet: Neural structured learning using vision transformer for violence detection | |
| Yao et al. | A survey of video violence detection | |
| Zhang et al. | Semi-supervised dictionary learning via local sparse constraints for violence detection | |
| Zhang et al. | Weakly supervised anomaly detection in videos considering the openness of events | |
| Zahid et al. | Ibaggedfcnet: An ensemble framework for anomaly detection in surveillance videos | |
| Alinezhad Noghre et al. | Understanding the challenges and opportunities of pose-based anomaly detection | |
| Martínez-Mascorro et al. | Suspicious behavior detection on shoplifting cases for crime prevention by using 3D convolutional neural networks | |
| Gupta et al. | Violence detection using deep learning techniques | |
| Kumar et al. | Abnormal human activity detection by convolutional recurrent neural network using fuzzy logic | |
| Abbas et al. | Anomaly detection in surveillance videos based on H265 and deep learning | |
| Shoaib et al. | Augmenting the Robustness and efficiency of violence detection systems for surveillance and non-surveillance scenarios | |
| Patel et al. | Predictive convolutional long short-term memory network for detecting anomalies in smart surveillance | |
| Altowairqi et al. | A review of the recent progress on crowd anomaly detection | |
| CN119540876B (en) | Deep learning-based personnel abnormal behavior analysis method | |
| Wang et al. | Federated Weakly Supervised Video Anomaly Detection with Multimodal Prompt | |
| CN109614893B (en) | Intelligent abnormal behavior track identification method and device based on situation reasoning | |
| Mangai et al. | Two-Stream Spatial–Temporal Feature Extraction and Classification Model for Anomaly Event Detection Using Hybrid Deep Learning Architectures | |
| Kanwal et al. | Large Scale Hierarchical Anomaly Detection and Temporal Localization | |
| Saleem et al. | Surveilia: anomaly identification using temporally localized surveillance videos | |
| Mahareek et al. | Detecting anomalies in security cameras with 3DCNN and ConvLSTM |