Rahbar et al., 2009 - Google Patents
Contention avoidance and resolution schemes in bufferless all-optical packet-switched networks: a surveyRahbar et al., 2009
- Document ID
- 13697817214974365251
- Author
- Rahbar A
- Yang O
- Publication year
- Publication venue
- IEEE Communications Surveys & Tutorials
External Links
Snippet
Optical Packet Switching (OPS) is the promising switching technique to utilize the huge bandwidth offered by all-optical networks using the DWDM (Dense Wavelength Division Multiplexing) technology. However, optical packet contention is the major problem in an …
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L12/00—Data switching networks
- H04L12/54—Store-and-forward switching systems
- H04L12/56—Packet switching systems
- H04L12/5601—Transfer mode dependent, e.g. ATM
- H04L2012/5629—Admission control
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L12/00—Data switching networks
- H04L12/54—Store-and-forward switching systems
- H04L12/56—Packet switching systems
- H04L12/5695—Admission control; Resource allocation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L47/00—Traffic regulation in packet switching networks
- H04L47/10—Flow control or congestion control
- H04L47/24—Flow control or congestion control depending on the type of traffic, e.g. priority or quality of service [QoS]
- H04L47/2441—Flow classification
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L47/00—Traffic regulation in packet switching networks
- H04L47/10—Flow control or congestion control
- H04L47/24—Flow control or congestion control depending on the type of traffic, e.g. priority or quality of service [QoS]
- H04L47/2458—Modification of priorities while in transit
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04Q—SELECTING
- H04Q11/00—Selecting arrangements for multiplex systems
- H04Q11/0001—Selecting arrangements for multiplex systems using optical switching
- H04Q11/0062—Network aspects
- H04Q11/0066—Provisions for optical burst or packet networks
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L12/00—Data switching networks
- H04L12/54—Store-and-forward switching systems
- H04L12/56—Packet switching systems
- H04L12/5693—Queue scheduling in packet switching networks
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L47/00—Traffic regulation in packet switching networks
- H04L47/10—Flow control or congestion control
- H04L47/24—Flow control or congestion control depending on the type of traffic, e.g. priority or quality of service [QoS]
- H04L47/2408—Different services, e.g. type of service [ToS]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04Q—SELECTING
- H04Q11/00—Selecting arrangements for multiplex systems
- H04Q11/0001—Selecting arrangements for multiplex systems using optical switching
- H04Q11/0062—Network aspects
- H04Q2011/0064—Arbitration, scheduling or medium access control aspects
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04Q—SELECTING
- H04Q11/00—Selecting arrangements for multiplex systems
- H04Q11/0001—Selecting arrangements for multiplex systems using optical switching
- H04Q11/0062—Network aspects
- H04Q11/0067—Provisions for optical access or distribution networks, e.g. Gigabit Ethernet Passive Optical Network (GE-PON), ATM-based Passive Optical Network (A-PON), PON-Ring
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04Q—SELECTING
- H04Q11/00—Selecting arrangements for multiplex systems
- H04Q11/0001—Selecting arrangements for multiplex systems using optical switching
- H04Q11/0062—Network aspects
- H04Q11/0071—Provisions for the electrical-optical layer interface
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L47/00—Traffic regulation in packet switching networks
- H04L47/10—Flow control or congestion control
- H04L47/12—Congestion avoidance or recovery
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L47/00—Traffic regulation in packet switching networks
- H04L47/70—Admission control or resource allocation
- H04L47/80—Actions related to the nature of the flow or the user
- H04L47/805—QOS or priority aware
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L47/00—Traffic regulation in packet switching networks
- H04L47/70—Admission control or resource allocation
- H04L47/80—Actions related to the nature of the flow or the user
- H04L47/801—Real time traffic
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L47/00—Traffic regulation in packet switching networks
- H04L47/70—Admission control or resource allocation
- H04L47/76—Reallocation of resources, renegotiation of resources, e.g. in-call
- H04L47/762—Reallocation of resources, renegotiation of resources, e.g. in-call triggered by the network
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L47/00—Traffic regulation in packet switching networks
- H04L47/10—Flow control or congestion control
- H04L47/15—Flow control or congestion control in relation to multipoint traffic
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04Q—SELECTING
- H04Q11/00—Selecting arrangements for multiplex systems
- H04Q11/0001—Selecting arrangements for multiplex systems using optical switching
- H04Q11/0005—Switch and router aspects
- H04Q2011/0037—Operation
- H04Q2011/0039—Electrical control
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L49/00—Packet switching elements
- H04L49/25—Routing or path finding through a switch fabric
- H04L49/253—Connections establishment or release between ports
- H04L49/254—Centralized controller, i.e. arbitration or scheduling
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L45/00—Routing or path finding of packets in data switching networks
- H04L45/30—Special provisions for routing multiclass traffic
- H04L45/302—Route determination based on requested QoS
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04J—MULTIPLEX COMMUNICATION
- H04J14/00—Optical multiplex systems
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Zhang et al. | Absolute QoS differentiation in optical burst-switched networks | |
| Vokkarane et al. | Prioritized burst segmentation and composite burst-assembly techniques for QoS support in optical burst-switched networks | |
| Verma et al. | Optical burst switching: a viable solution for terabit IP backbone | |
| Vokkarane et al. | Segmentation-based nonpreemptive channel scheduling algorithms for optical burst-switched networks | |
| Kaheel et al. | Quality-of-service mechanisms in IP-over-WDM networks | |
| Rahbar et al. | Contention avoidance and resolution schemes in bufferless all-optical packet-switched networks: a survey | |
| Kaheel et al. | A strict priority scheme for quality-of-service provisioning in optical burst switching networks | |
| Dolzer | Assured Horizon-A new combined framework for burst assembly and reservation in optical burst switched networks | |
| Farahmand et al. | Dynamic traffic grooming in optical burst-switched networks | |
| Zhang et al. | Differentiated contention resolution for QoS in photonic packet-switched networks | |
| Angelopoulos et al. | An optical network architecture with distributed switching inside node clusters features improved loss, efficiency, and cost | |
| Bjornstad et al. | Optical burst and packet switching: Node and network design, contention resolution and Quality of Service | |
| Sam et al. | Study of QoS performance in optical burst switched networks (OBS) | |
| Anand et al. | Wavelength conversion and deflection routing in all-optical packet-switched networks through contention resolution: A survey | |
| Kaheel et al. | Quantitative QoS guarantees in labeled optical burst switching networks | |
| Ribeiro et al. | Improvements on performance of photonic packet switching nodes by priority assignment and buffer sharing | |
| Li et al. | Burst cloning with load balancing | |
| Shan et al. | Study on the problem of routing, wavelength, and time-slot assignment towards optical time-slot switching technology | |
| Mountrouidou et al. | A zero burst loss architecture for star OBS networks | |
| Klinkowski | Offset time-emulated architecture for optical burst switching-modelling and performance evaluation | |
| Christodoulopoulos et al. | Relaxing delayed reservations: An approach for quality of service differentiation in optical burst switching networks | |
| Liu et al. | A universal signaling, switching and reservation framework for future optical networks | |
| Rahbar et al. | A new bandwidth access framework in slotted-OPS networks | |
| Nleya et al. | QoS considerations in OBS switched backbone networks | |
| Kaheel et al. | Priority scheme for supporting quality of service in optical burst switching networks |