[go: up one dir, main page]

Yang et al., 2025 - Google Patents

Spin‐coating fabrication of high‐yield and uniform organic thin‐film transistors via a primer template growth

Yang et al., 2025

View PDF @Full View
Document ID
14205058153689023338
Author
Yang Z
Su J
Wang J
Li X
Li F
Hu J
Chen N
Tao Z
Yang D
Wang D
Zhu Q
Liao Y
Lu Z
Publication year
Publication venue
Aggregate

External Links

Snippet

Solution coating of organic semiconductors offers great potential for achieving low‐cost and high‐throughput manufacturing of large‐area and flexible electronics. However, the solution processability of semiconducting small molecules for fabricating uniform and reliable thin …
Continue reading at onlinelibrary.wiley.com (PDF) (other versions)

Classifications

    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L51/00Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
    • H01L51/05Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof specially adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential- jump barrier or surface barrier multistep processes for their manufacture
    • H01L51/0504Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof specially adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential- jump barrier or surface barrier multistep processes for their manufacture the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or swiched, e.g. three-terminal devices
    • H01L51/0508Field-effect devices, e.g. TFTs
    • H01L51/0512Field-effect devices, e.g. TFTs insulated gate field effect transistors
    • H01L51/0545Lateral single gate single channel transistors with inverted structure, i.e. the organic semiconductor layer is formed after the gate electrode
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L51/00Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
    • H01L51/0032Selection of organic semiconducting materials, e.g. organic light sensitive or organic light emitting materials
    • H01L51/005Macromolecular systems with low molecular weight, e.g. cyanine dyes, coumarine dyes, tetrathiafulvalene
    • H01L51/0052Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer, carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer, carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L51/00Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
    • H01L51/0032Selection of organic semiconducting materials, e.g. organic light sensitive or organic light emitting materials
    • H01L51/005Macromolecular systems with low molecular weight, e.g. cyanine dyes, coumarine dyes, tetrathiafulvalene
    • H01L51/0062Macromolecular systems with low molecular weight, e.g. cyanine dyes, coumarine dyes, tetrathiafulvalene aromatic compounds comprising a hetero atom, e.g.: N,P,S
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L51/00Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
    • H01L51/0001Processes specially adapted for the manufacture or treatment of devices or of parts thereof
    • H01L51/0002Deposition of organic semiconductor materials on a substrate
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L23/00Details of semiconductor or other solid state devices

Similar Documents

Publication Publication Date Title
Duan et al. Scalable fabrication of highly crystalline organic semiconductor thin film by channel‐restricted screen printing toward the low‐cost fabrication of high‐performance transistor arrays
Liu et al. Self‐Assembled Monolayers of Phosphonic Acids with Enhanced Surface Energy for High‐Performance Solution‐Processed N‐Channel Organic Thin‐Film Transistors
Nakayama et al. Patternable solution‐crystallized organic transistors with high charge carrier mobility
JP4700162B2 (en) Organic circuit fabrication process
He et al. Enhanced performance consistency in nanoparticle/TIPS pentacene‐based organic thin film transistors
US8187915B2 (en) Aryl dicarboxylic acid diimidazole-based compounds as n-type semiconductor materials for thin film transistors
US8492192B2 (en) Composition for forming an organic semiconducting device
Lee et al. Control of droplet morphology for inkjet-printed TIPS-pentacene transistors
Umeda et al. High-mobility and air-stable organic thin-film transistors with highly ordered semiconducting polymer films
US7977670B2 (en) Organic transistor
Soeda et al. Stable growth of large-area single crystalline thin films from an organic semiconductor/polymer blend solution for high-mobility organic field-effect transistors
Peng et al. A Transfer Method for High‐Mobility, Bias‐Stable, and Flexible Organic Field‐Effect Transistors
WO2007125950A1 (en) Organic semiconductor thin film and organic semiconductor device
Yang et al. Spin‐coating fabrication of high‐yield and uniform organic thin‐film transistors via a primer template growth
CN105514039A (en) Method for optimizing organic thin film transistor devices based on inkjet printing technology
Kim et al. Green‐sensitive phototransistor based on solution‐processed 2D n‐type organic single crystal
Kumagai et al. Role of Perfluorophenyl Group in the Side Chain of Small-Molecule n-Type Organic Semiconductors in Stress Stability of Single-Crystal Transistors
Tomita et al. Substrate-independent control of polymorphs in tetraphenylporphyrin thin films by varying the solvent evaporation time using a simple spin-coating technique
JP5635407B2 (en) Thin film formation method using organic semiconductor material molecules
Liu et al. Experimental study and statistical analysis of solution-shearing processed organic transistors based on an asymmetric small-molecule semiconductor
Bilgaiyan et al. Solution processed organic transistors on polymeric gate dielectric with mobility exceeding 15 cm2 V− 1 s− 1
CN105131535A (en) Composition, organic semiconductor field effect transistor containing same, and preparation method thereof
US20090294760A1 (en) Organic semiconductors and growth approaches therefor
Qiu et al. Large‐Area Deposition of Highly Crystalline F4‐Tetracyanoquinodimethane Thin Films by Molecular Step Templates
Yasuda et al. Conjugation-length dependency of unsubstituted oligo-p-phenylenevinylenes on the performance of organic field-effect transistors