[go: up one dir, main page]

Poulton, 2016 - Google Patents

Integrated LIDAR with optical phased arrays in silicon photonics

Poulton, 2016

View PDF
Document ID
14688189193485693324
Author
Poulton C
Publication year

External Links

Snippet

Light detection and ranging (LIDAR) has become an ubiquitous ranging technology. LIDAR systems are integral to almost all autonomous vehicles and robotics. Most LIDAR systems today use discrete free-space optical components and utilize a mechanical apparatus for …
Continue reading at dspace.mit.edu (PDF) (other versions)

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
    • G02B6/00Light guides
    • G02B6/10Light guides of the optical waveguide type
    • G02B6/12Light guides of the optical waveguide type of the integrated circuit kind
    • G02B6/122Light guides of the optical waveguide type of the integrated circuit kind basic optical elements, e.g. light-guiding paths
    • G02B6/125Bends, branchings or intersections
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
    • G02B6/00Light guides
    • G02B6/10Light guides of the optical waveguide type
    • G02B6/12Light guides of the optical waveguide type of the integrated circuit kind
    • G02B2006/12083Constructional arrangements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
    • G02B6/00Light guides
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
    • G02B6/00Light guides
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • GPHYSICS
    • G02OPTICS
    • G02FDEVICES OR ARRANGEMENTS, THE OPTICAL OPERATION OF WHICH IS MODIFIED BY CHANGING THE OPTICAL PROPERTIES OF THE MEDIUM OF THE DEVICES OR ARRANGEMENTS FOR THE CONTROL OF THE INTENSITY, COLOUR, PHASE, POLARISATION OR DIRECTION OF LIGHT, e.g. SWITCHING, GATING, MODULATING OR DEMODULATING; TECHNIQUES OR PROCEDURES FOR THE OPERATION THEREOF; FREQUENCY-CHANGING; NON-LINEAR OPTICS; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating, or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating, or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
    • G02F1/015Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating, or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on semiconductor elements with at least one potential jump barrier, e.g. PN, PIN junction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/32Systems determining position data of a target for measuring distance only using transmission of continuous unmodulated waves, amplitude-, frequency-, or phase-modulated waves
    • G01S17/325Systems determining position data of a target for measuring distance only using transmission of continuous unmodulated waves, amplitude-, frequency-, or phase-modulated waves using transmission of frequency-modulated waves and the received signal, or a signal derived therefrom, being heterodyned with a locally-generated signal related to the contemporaneous transmitted signal to give a beat-frequency signal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using infra-red, visible or ultra-violet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/7703Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator using reagent-clad optical fibres or optical waveguides
    • G01N21/774Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator using reagent-clad optical fibres or optical waveguides the reagent being on a grating or periodic structure
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using infra-red, visible or ultra-violet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated

Similar Documents

Publication Publication Date Title
Xu et al. Fully integrated solid-state LiDAR transmitter on a multi-layer silicon-nitride-on-silicon photonic platform
Poulton Integrated LIDAR with optical phased arrays in silicon photonics
CN112740062B (en) Optical sensor chip
US11378691B2 (en) Generation of LIDAR data from optical signals
TWI801364B (en) Semiconductor photonic circuit and method for providing frequency chirped light beam
Baba et al. Silicon photonics FMCW LiDAR chip with a slow-light grating beam scanner
US9735885B1 (en) Chip-scale mid-IR scanning frequency modulated coherent ladar receiver
JP2024020584A (en) Control of phase in steering of LIDAR output signal
EP3956679B1 (en) Apparatus and method for managing coherent detection from multiple apertures in a lidar system
US11892565B2 (en) Controlling direction of LIDAR output signals
Wu et al. Multi-beam optical phase array for long-range LiDAR and free-space data communication
JP7019950B2 (en) Laser radar device
Zheng et al. High-precision silicon-integrated frequency-modulated continuous wave LiDAR calibrated using a microresonator
US20250244121A1 (en) Frequency Shifter for Heterodyne Interferometry Measurements and Device for Heterodyne Interferometry Measurements Having Such a Frequency Shifter
Hashemi A review of silicon photonics LiDAR
Zhang et al. A fully solid-state beam scanner for FMCW LiDAR application
Luo et al. Demonstration of 128-channel optical phased array with large scanning range
CN112130130A (en) Silicon optical chip and laser radar system
CN116209916A (en) External cavity laser with phase shifter
Zhuang et al. On-chip sub-picometer continuous wavelength fiber-Bragg-grating interrogator
Missinne et al. Compact packaged silicon photonic Bragg grating sensor based on a ball lens interface
Xu et al. FMCW LiDAR with a coherent receiver chip based on 3 μm SOI photonics platform
Yu et al. Focal plane array chip with integrated transmit antenna and receive array for LiDAR
Yaacobi Integrated optical phased arrays for lidar applications
Liu et al. Silicon photonic four-channel dual-polarization coherent receiver module for FMCW LiDAR application