Xi et al., 2015 - Google Patents
Improved salient object detection based on background priorsXi et al., 2015
- Document ID
- 1511921099140696728
- Author
- Xi T
- Fang Y
- Lin W
- Zhang Y
- Publication year
- Publication venue
- Pacific Rim Conference on Multimedia
External Links
Snippet
Recently, many saliency detection models use image boundary as an effective prior of image background for saliency extraction. However, these models may fail when the salient object is overlapped with the boundary. In this paper, we propose a novel saliency detection …
- 238000001514 detection method 0 title abstract description 63
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/30—Information retrieval; Database structures therefor; File system structures therefor
- G06F17/30244—Information retrieval; Database structures therefor; File system structures therefor in image databases
- G06F17/30247—Information retrieval; Database structures therefor; File system structures therefor in image databases based on features automatically derived from the image data
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/30—Information retrieval; Database structures therefor; File system structures therefor
- G06F17/30781—Information retrieval; Database structures therefor; File system structures therefor of video data
- G06F17/30784—Information retrieval; Database structures therefor; File system structures therefor of video data using features automatically derived from the video content, e.g. descriptors, fingerprints, signatures, genre
- G06F17/30799—Information retrieval; Database structures therefor; File system structures therefor of video data using features automatically derived from the video content, e.g. descriptors, fingerprints, signatures, genre using low-level visual features of the video content
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/36—Image preprocessing, i.e. processing the image information without deciding about the identity of the image
- G06K9/46—Extraction of features or characteristics of the image
- G06K9/4671—Extracting features based on salient regional features, e.g. Scale Invariant Feature Transform [SIFT] keypoints
- G06K9/4676—Extracting features based on a plurality of salient regional features, e.g. "bag of words"
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/6267—Classification techniques
- G06K9/6268—Classification techniques relating to the classification paradigm, e.g. parametric or non-parametric approaches
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/6217—Design or setup of recognition systems and techniques; Extraction of features in feature space; Clustering techniques; Blind source separation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/36—Image preprocessing, i.e. processing the image information without deciding about the identity of the image
- G06K9/46—Extraction of features or characteristics of the image
- G06K9/4642—Extraction of features or characteristics of the image by performing operations within image blocks or by using histograms
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/6201—Matching; Proximity measures
- G06K9/6202—Comparing pixel values or logical combinations thereof, or feature values having positional relevance, e.g. template matching
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/00624—Recognising scenes, i.e. recognition of a whole field of perception; recognising scene-specific objects
- G06K9/00711—Recognising video content, e.g. extracting audiovisual features from movies, extracting representative key-frames, discriminating news vs. sport content
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/30—Information retrieval; Database structures therefor; File system structures therefor
- G06F17/30286—Information retrieval; Database structures therefor; File system structures therefor in structured data stores
- G06F17/30587—Details of specialised database models
- G06F17/30595—Relational databases
- G06F17/30598—Clustering or classification
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/00221—Acquiring or recognising human faces, facial parts, facial sketches, facial expressions
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10024—Color image
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Qian et al. | Object tracking in hyperspectral videos with convolutional features and kernelized correlation filter | |
| Zheng et al. | Fusion of block and keypoints based approaches for effective copy-move image forgery detection | |
| Jerripothula et al. | Cats: Co-saliency activated tracklet selection for video co-localization | |
| Yildirim et al. | FASA: fast, accurate, and size-aware salient object detection | |
| Hwang et al. | Saliency detection based on seed propagation in a multilayer graph | |
| Singh et al. | A novel position prior using fusion of rule of thirds and image center for salient object detection | |
| Sun et al. | High-Level Multi-difference Cues for Image Saliency Detection | |
| Zhang et al. | A review of co-saliency detection technique: Fundamentals, applications, and challenges | |
| Ren et al. | How important is location information in saliency detection of natural images | |
| CN117992631A (en) | Image retrieval method, device, electronic equipment and readable storage medium | |
| Cuffaro et al. | Segmentation free object discovery in video | |
| Du et al. | Salient object segmentation based on depth-aware image layering | |
| Mookdarsanit et al. | Location estimation of a photo: A geo-signature MapReduce workflow | |
| Favorskaya et al. | Fast salient object detection in non-stationary video sequences based on spatial saliency maps | |
| Wang et al. | Accurate saliency detection based on depth feature of 3D images | |
| Tang et al. | Salient object detection using color spatial distribution and minimum spanning tree weight | |
| Xi et al. | Improved salient object detection based on background priors | |
| Zhang et al. | Saliency detection via sparse reconstruction errors of covariance descriptors on Riemannian manifolds | |
| Nouri et al. | Salient object detection using local, global and high contrast graphs | |
| Bhaumik et al. | Redundancy elimination in video summarization | |
| Yao et al. | Video stitching based on iterative hashing and dynamic seam-line with local context | |
| Zou et al. | Saliency detection using boundary information | |
| Li et al. | Robust salient object detection and segmentation | |
| Xu et al. | Unsupervised saliency estimation based on robust hypotheses | |
| Qi et al. | Graph-Boolean map for salient object detection |