Wang et al., 2015 - Google Patents
A survey on data center networking for cloud computingWang et al., 2015
- Document ID
- 15770108979087783565
- Author
- Wang B
- Qi Z
- Ma R
- Guan H
- Vasilakos A
- Publication year
- Publication venue
- Computer Networks
External Links
Snippet
Abstract Data Center Networks (DCNs) are an essential infrastructure that impact the success of cloud computing. A scalable and efficient data center is crucial in both the construction and operation of stable cloud services. In recent years, the growing importance …
- 238000011160 research 0 abstract description 33
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for programme control, e.g. control unit
- G06F9/06—Arrangements for programme control, e.g. control unit using stored programme, i.e. using internal store of processing equipment to receive and retain programme
- G06F9/46—Multiprogramming arrangements
- G06F9/50—Allocation of resources, e.g. of the central processing unit [CPU]
- G06F9/5061—Partitioning or combining of resources
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for programme control, e.g. control unit
- G06F9/06—Arrangements for programme control, e.g. control unit using stored programme, i.e. using internal store of processing equipment to receive and retain programme
- G06F9/46—Multiprogramming arrangements
- G06F9/50—Allocation of resources, e.g. of the central processing unit [CPU]
- G06F9/5005—Allocation of resources, e.g. of the central processing unit [CPU] to service a request
- G06F9/5027—Allocation of resources, e.g. of the central processing unit [CPU] to service a request the resource being a machine, e.g. CPUs, Servers, Terminals
- G06F9/505—Allocation of resources, e.g. of the central processing unit [CPU] to service a request the resource being a machine, e.g. CPUs, Servers, Terminals considering the load
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L12/00—Data switching networks
- H04L12/54—Store-and-forward switching systems
- H04L12/56—Packet switching systems
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L67/00—Network-specific arrangements or communication protocols supporting networked applications
- H04L67/10—Network-specific arrangements or communication protocols supporting networked applications in which an application is distributed across nodes in the network
- H04L67/1002—Network-specific arrangements or communication protocols supporting networked applications in which an application is distributed across nodes in the network for accessing one among a plurality of replicated servers, e.g. load balancing
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L47/00—Traffic regulation in packet switching networks
- H04L47/10—Flow control or congestion control
- H04L47/12—Congestion avoidance or recovery
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L67/00—Network-specific arrangements or communication protocols supporting networked applications
- H04L67/10—Network-specific arrangements or communication protocols supporting networked applications in which an application is distributed across nodes in the network
- H04L67/1097—Network-specific arrangements or communication protocols supporting networked applications in which an application is distributed across nodes in the network for distributed storage of data in a network, e.g. network file system [NFS], transport mechanisms for storage area networks [SAN] or network attached storage [NAS]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L41/00—Arrangements for maintenance or administration or management of packet switching networks
- H04L41/50—Network service management, i.e. ensuring proper service fulfillment according to an agreement or contract between two parties, e.g. between an IT-provider and a customer
- H04L41/5041—Service implementation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L12/00—Data switching networks
- H04L12/02—Details
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L49/00—Packet switching elements
- H04L49/25—Routing or path finding through a switch fabric
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L45/00—Routing or path finding of packets in data switching networks
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L41/00—Arrangements for maintenance or administration or management of packet switching networks
- H04L41/12—Arrangements for maintenance or administration or management of packet switching networks network topology discovery or management
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L49/00—Packet switching elements
- H04L49/70—Virtual switches
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L12/00—Data switching networks
- H04L12/28—Data switching networks characterised by path configuration, e.g. local area networks [LAN], wide area networks [WAN]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L41/00—Arrangements for maintenance or administration or management of packet switching networks
- H04L41/14—Arrangements for maintenance or administration or management of packet switching networks involving network analysis or design, e.g. simulation, network model or planning
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L43/00—Arrangements for monitoring or testing packet switching networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F15/00—Digital computers in general; Data processing equipment in general
- G06F15/16—Combinations of two or more digital computers each having at least an arithmetic unit, a programme unit and a register, e.g. for a simultaneous processing of several programmes
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Wang et al. | A survey on data center networking for cloud computing | |
| Rabbani et al. | On tackling virtual data center embedding problem | |
| Yue et al. | Resource optimization and delay guarantee virtual network function placement for mapping SFC requests in cloud networks | |
| Ghorbani et al. | Walk the line: consistent network updates with bandwidth guarantees | |
| Bozakov et al. | Autoslice: automated and scalable slicing for software-defined networks | |
| Yue et al. | Throughput optimization and delay guarantee VNF placement for mapping SFC requests in NFV-enabled networks | |
| Ghorbani et al. | Micro load balancing in data centers with DRILL | |
| US9692707B2 (en) | Virtual resource object component | |
| US20160234071A1 (en) | Distributed application framework that uses network and application awareness for placing data | |
| Duan et al. | A load balancing and multi-tenancy oriented data center virtualization framework | |
| Wang et al. | Towards network-aware service composition in the cloud | |
| Li et al. | OFScheduler: a dynamic network optimizer for MapReduce in heterogeneous cluster | |
| Kim et al. | An energy-aware service function chaining and reconfiguration algorithm in NFV | |
| Assi et al. | Towards scalable traffic management in cloud data centers | |
| Govindarajan et al. | An intelligent load balancer for software defined networking (SDN) based cloud infrastructure | |
| Zhang et al. | Performance evaluation of Software-Defined Network (SDN) controllers using Dijkstra’s algorithm | |
| CN113612688A (en) | Distributed software defined network control system and construction method thereof | |
| Ruiu et al. | On the energy-proportionality of data center networks | |
| Li et al. | Improving consolidation of virtual machine based on virtual switching overhead estimation | |
| Wang et al. | Towards bandwidth guaranteed energy efficient data center networking | |
| Saxena et al. | Review of SDN-based load-balancing methods, issues, challenges, and roadmap | |
| Priyadarsini et al. | A new approach for SDN performance enhancement | |
| Zhang et al. | Cluster-aware virtual machine collaborative migration in media cloud | |
| Li et al. | CoMan: Managing bandwidth across computing frameworks in multiplexed datacenters | |
| Ghalwash et al. | Software-defined extreme scale networks for bigdata applications |