Hurez et al., 2019 - Google Patents
A Disruptive Technology–Improving Half-Bridge Gate Driver Performances Using Galvanic IsolationHurez et al., 2019
- Document ID
- 15848513584669906899
- Author
- Hurez I
- Anghel V
- Vlădoianu F
- Brezeanu G
- Publication year
- Publication venue
- 2019 International Semiconductor Conference (CAS)
External Links
Snippet
This paper presents an alternative isolation technique for half-bridge gate drivers (HBGD). The circuit separates the high voltage module that commands the high-side power switch from the low voltage module which controls the low-side power transistor by means of …
- 238000002955 isolation 0 title abstract description 26
Classifications
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K17/00—Electronic switching or gating, i.e. not by contact-making or -braking
- H03K17/51—Electronic switching or gating, i.e. not by contact-making or -braking characterised by the components used
- H03K17/56—Electronic switching or gating, i.e. not by contact-making or -braking characterised by the components used using semiconductor devices
- H03K17/687—Electronic switching or gating, i.e. not by contact-making or -braking characterised by the components used using semiconductor devices using field-effect transistors
- H03K17/693—Switching arrangements with several input- or output-terminals
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K17/00—Electronic switching or gating, i.e. not by contact-making or -braking
- H03K17/16—Modifications for eliminating interference voltages or currents
- H03K17/161—Modifications for eliminating interference voltages or currents in field-effect transistor switches
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K17/00—Electronic switching or gating, i.e. not by contact-making or -braking
- H03K17/16—Modifications for eliminating interference voltages or currents
- H03K17/168—Modifications for eliminating interference voltages or currents in composite switches
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K3/00—Circuits for generating electric pulses; Monostable, bistable or multistable circuits
- H03K3/02—Generators characterised by the type of circuit or by the means used for producing pulses
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K17/00—Electronic switching or gating, i.e. not by contact-making or -braking
- H03K17/10—Modifications for increasing the maximum permissible switched voltage
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K19/00—Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
- H03K19/0175—Coupling arrangements; Interface arrangements
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/02—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
- H01L27/04—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
- H01L27/08—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind
- H01L27/085—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
- H01L27/088—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K2217/00—Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/08—Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L29/00—Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device; Multistep manufacturing processes therefor
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/02—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
- H01L27/04—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
- H01L27/06—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
- H01L27/0611—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region
- H01L27/0617—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US10116297B1 (en) | DC-coupled high-voltage level shifter | |
| US9843311B2 (en) | Integrated level shifter circuit | |
| CN110176858B (en) | Power conversion circuits utilizing one or more GaN-based semiconductor devices | |
| TWI719599B (en) | Electronic circuit and method of operating an electronic circuit | |
| US8493101B2 (en) | Drive circuit with a transmission circuit for capacitively transmitting a signal and associated method | |
| Yin et al. | A novel gate assisted circuit to reduce switching loss and eliminate shoot-through in SiC half bridge configuration | |
| KR101438236B1 (en) | A driving circuit having an upper level shifter for transmitting an input signal | |
| US8299836B2 (en) | Level shift circuit and power conversion unit | |
| CN113037273A (en) | Capacitive coupling type level shifter | |
| EP3149852A1 (en) | Cascode switching circuit | |
| US20180123579A1 (en) | Paralleling power switches using a differential mode choke in the gate drive loop | |
| CN109314509A (en) | Driving device | |
| Long et al. | A high-frequency resonant gate driver for enhancement-mode GaN power devices | |
| Zhang et al. | A capacitive-loaded level shift circuit for improving the noise immunity of high voltage gate drive IC | |
| Akahane et al. | A new level up shifter for HVICs with high noise tolerance | |
| Rouger et al. | Modular multilevel SOI-CMOS active gate driver architecture for SiC MOSFETs | |
| Rujas et al. | Gate driver for high power SiC modules: design considerations, development and experimental validation | |
| Xie et al. | Study of 1200 V SiC JFET cascode device | |
| Hurez et al. | A Disruptive Technology–Improving Half-Bridge Gate Driver Performances Using Galvanic Isolation | |
| Wang et al. | Design of high temperature gate driver for SiC MOSFET for EV motor drives | |
| KR102026929B1 (en) | Gate driving circuit for power switch | |
| CN118677219A (en) | GaN HEMT half-bridge bidirectional crosstalk self-adaptive suppression circuit capable of reducing dead zone loss | |
| CN105897246B (en) | Voltage level shifter for high voltage applications | |
| Zheng et al. | A 200V High-Speed Level Shifter for Monolithic GaN IC with Enhanced $\mathrm {d} V_\mathrm {S}/\text {dt} $ Noise Immunity and Negative $ V_\mathrm {S} $ Tolerance | |
| Lu et al. | A nMOS-R Cross-Coupled Level Shifter With High dV/dt Noise Immunity for 600-V High-Voltage Gate Driver IC |