[go: up one dir, main page]

Wampler et al., 1985 - Google Patents

Cryogenic focusing of pyrolysis products for direct (splitless) capillary gas chromatography

Wampler et al., 1985

Document ID
15960199362078036362
Author
Wampler T
Levy E
Publication year
Publication venue
Journal of Analytical and Applied Pyrolysis

External Links

Snippet

The progression from packed column to split capillary to direct capillary chromatography has permitted analysis with greatly improved sensitivity and resolution, allowing the study of specific components which may be present at low concentration. Pyrolysis-gas …
Continue reading at www.sciencedirect.com (other versions)

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/06Preparation
    • G01N30/12Preparation by evaporation
    • G01N2030/121Preparation by evaporation cooling; cold traps
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/26Conditioning of the fluid carrier; Flow patterns
    • G01N30/38Flow patterns
    • G01N30/46Flow patterns using more than one column
    • G01N30/461Flow patterns using more than one column with serial coupling of separation columns
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/26Conditioning of the fluid carrier; Flow patterns
    • G01N30/28Control of physical parameters of the fluid carrier
    • G01N30/30Control of physical parameters of the fluid carrier of temperature
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N2030/022Column chromatography characterised by the kind of separation mechanism
    • G01N2030/025Gas chromatography
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/16Injection
    • G01N2030/167Injection on-column injection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/06Preparation
    • G01N30/08Preparation using an enricher
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/62Detectors specially adapted therefor
    • G01N2030/621Detectors specially adapted therefor signal-to-noise ratio
    • G01N2030/623Detectors specially adapted therefor signal-to-noise ratio by modulation of sample feed or detector response
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/88Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/60Construction of the column
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/22Devices for withdrawing samples in the gaseous state
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/90Plate chromatography, e.g. thin layer or paper chromatography
    • G01N30/94Development
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/40Concentrating samples
    • G01N1/405Concentrating samples by adsorption or absorption
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N2030/0075Separation due to differential desorption
    • G01N2030/008Thermal desorption
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by the preceding groups
    • G01N33/24Investigating or analysing materials by specific methods not covered by the preceding groups earth materials
    • G01N33/241Investigating or analysing materials by specific methods not covered by the preceding groups earth materials for hydrocarbon content

Similar Documents

Publication Publication Date Title
Gamón et al. Multiresidue determination of pesticides in fruit and vegetables by gas chromatography/tandem mass spectrometry
US5390529A (en) Method for determining heavy hydrocarbons in rock matrices and the apparatus for the purpose
US5205154A (en) Apparatus and method for simultaneous supercritical fluid extraction and gas chromatography
US6311544B1 (en) Selective removal of volatile substances injected into a chromatographic packing filled column
US5472670A (en) Gas chromatography sample injector and apparatus using same
US5394733A (en) Quantitative pyrolysis-gas chromatography using diamondoid compounds
Wampler et al. Cryogenic focusing of pyrolysis products for direct (splitless) capillary gas chromatography
Pankow et al. The analysis of volatile compounds by purge and trap with whole column cryotrapping (WCC) on a fused silica capillary column
US4106908A (en) Method for the determination of the organic carbon content in mineral-containing materials
US3735565A (en) Enrichment of chromatograph output
Venema et al. A new method for solvent-free application of polymers and inorganic materials to ferromagnetic wires used for pyrolysis-capillary gas chromatographic studies
CA1110871A (en) Method for the determination of the organic carbon content of raw rocks and similar
Whiting et al. On-column sampling device for thermogravimetry/capillary gas chromatography/mass spectrometry
US3205700A (en) Apparatus for recovering minute quantities of volatile compounds from inert solids
Hiller et al. Optimization and application of the large volume on‐column introduction (LOCI) technique for capillary GC with preliminary on‐line capillary solvent distillation/concentration
Guo et al. Determination of the trace 1, 4-dioxane
Marriott et al. Studies on cryogenic trapping of solutes during chromatographic elution in capillary gas chromatography
JPH06167482A (en) Volatile hydrocarbon continuously automatic analyzer
Grob et al. Charcoal open tubular traps for the analysis of air and headspace samples
Scanlan et al. Collecting and transferring packed-column gas chromatographic fractions to capillary columns for fast-scan mass spectral analysis
Wright et al. The application of multidimensional techniques to the rapid pyrolysis-GC profiling of synthetic polymers
Schaefer et al. Analysis of hydrocarbons in coals by means of a microthermodesorption—capillary gas chromatography combination
Sacks et al. High‐speed capillary column GC for rapid screening of gasoline to diesel range organic compounds
Tranthim-Fryer The application of a simple and inexpensive modified carbon wire adsorption/solvent extraction technique to the analysis of accelerants and volatile organic compounds in arson debris
Oguri et al. Development of a curie‐point headspace sampler for capillary gas chromatography