[go: up one dir, main page]

Ardiny et al., 2024 - Google Patents

Applications of unmanned aerial vehicles in radiological monitoring: A review

Ardiny et al., 2024

Document ID
16003367522703871484
Author
Ardiny H
Beigzadeh A
Mahani H
Publication year
Publication venue
Nuclear Engineering and Design

External Links

Snippet

Abstract The use of Unmanned Aerial Vehicles (UAVs) in various applications including military, entertainment, and surveillance has been considerably growing across the world. One notable application is the utilization of UAVs for detecting and measuring contamination …
Continue reading at www.sciencedirect.com (other versions)

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/169Exploration, location of contaminated surface areas in situ measurement, e.g. floor contamination monitor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS
    • G01V5/00Prospecting or detecting by the use of nuclear radiation, e.g. of natural or induced radioactivity
    • G01V5/0008Detecting hidden objects, e.g. weapons, explosives
    • G01V5/0075Passive interrogation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/17Circuit arrangements not adapted to a particular type of detector
    • G01T1/178Circuit arrangements not adapted to a particular type of detector for measuring specific activity in the presence of other radioactive substances, e.g. natural, in the air or in liquids such as rain water
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS
    • G01V5/00Prospecting or detecting by the use of nuclear radiation, e.g. of natural or induced radioactivity
    • G01V5/02Prospecting or detecting by the use of nuclear radiation, e.g. of natural or induced radioactivity specially adapted for surface logging, e.g. from aircraft
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS
    • G01V5/00Prospecting or detecting by the use of nuclear radiation, e.g. of natural or induced radioactivity
    • G01V5/0008Detecting hidden objects, e.g. weapons, explosives
    • G01V5/0083Detecting hidden objects, e.g. weapons, explosives utilizing a network, e.g. a remote expert, accessing remote data or the like
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/167Measuring radioactive content of objects, e.g. contamination
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS
    • G01V5/00Prospecting or detecting by the use of nuclear radiation, e.g. of natural or induced radioactivity
    • G01V5/0008Detecting hidden objects, e.g. weapons, explosives
    • G01V5/0016Active interrogation, i.e. using an external radiation source, e.g. using pulsed, continuous or cosmic rays
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/29Measurement performed on radiation beams, e.g. position or section of the beam; Measurement of spatial distribution of radiation
    • G01T1/2914Measurement of spatial distribution of radiation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation not covered by G01N21/00 or G01N22/00, e.g. X-rays or neutrons
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation not covered by G01N21/00 or G01N22/00, e.g. X-rays or neutrons by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation not covered by G01N21/00 or G01N22/00, e.g. X-rays or neutrons by transmitting the radiation through the material and forming a picture
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/02Dosimeters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T7/00Details of radiation-measuring instruments
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS
    • G01V5/00Prospecting or detecting by the use of nuclear radiation, e.g. of natural or induced radioactivity
    • G01V5/04Prospecting or detecting by the use of nuclear radiation, e.g. of natural or induced radioactivity specially adapted for well-logging
    • G01V5/08Prospecting or detecting by the use of nuclear radiation, e.g. of natural or induced radioactivity specially adapted for well-logging using primary nuclear radiation sources or X-rays
    • G01V5/10Prospecting or detecting by the use of nuclear radiation, e.g. of natural or induced radioactivity specially adapted for well-logging using primary nuclear radiation sources or X-rays using neutron sources
    • G01V5/101Prospecting or detecting by the use of nuclear radiation, e.g. of natural or induced radioactivity specially adapted for well-logging using primary nuclear radiation sources or X-rays using neutron sources and detecting the secondary Y-rays produced in the surrounding layers of the bore hole

Similar Documents

Publication Publication Date Title
Marques et al. State-of-the-art mobile radiation detection systems for different scenarios
Ardiny et al. Applications of unmanned aerial vehicles in radiological monitoring: A review
MacFarlane et al. Lightweight aerial vehicles for monitoring, assessment and mapping of radiation anomalies
Pöllänen et al. Radiation surveillance using an unmanned aerial vehicle
Gong et al. Locating lost radioactive sources using a UAV radiation monitoring system
Connor et al. Radiological mapping of post-disaster nuclear environments using fixed-wing unmanned aerial systems: A study from chornobyl
Lee et al. Optimizing UAV-based radiation sensor systems for aerial surveys
Cai et al. Designing a radiation sensing UAV system
Chen et al. In-flight performance of the Advanced Radiation Detector for UAV Operations (ARDUO)
Čerba et al. Unmanned radiation-monitoring system
Hartman et al. Remote sensing of neutron and gamma radiation using aerial unmanned autonomous system
Popov et al. Features of the modern UAV-based complexes use to solve radiation control problems
Falciglia et al. Preliminary investigation for quali-quantitative characterization of soils contaminated with 241Am and 152Eu by low-altitude unmanned aerial vehicles (UAVs) equipped with small size γ-ray spectrometer: Detection efficiency and minimum detectable activity (MDA) concentration assessment
Alrammah et al. A digitalized framework for responding to radiological accidents in a public major event
Vargas et al. Comparison of airborne radiation detectors carried by rotary-wing unmanned aerial systems
Marques et al. Radioactive source localization using a mobile radiation detection system featuring informed path-based decisions
Brunelli et al. DRAGoN: drone for radiation detection of gammas and neutrons
Rusňák et al. Emergency unmanned airborne spectrometric (HPGe) monitoring system
Vale et al. Heterogeneous drone fleet for radiological inspection
Zavala Autonomous detection and characterization of nuclear materials using co-robots
Allyson Environmental gamma-ray spectrometry: simulation of absolute calibration of in-situ and airborne spectrometers for natural and anthropogenic sources
Ardini et al. Pre-flight experiments for the unmanned aerial monitoring system (UAMS) radioactive detection under its limitations
Mascarich et al. Towards robotically supported decommissioning of nuclear sites
Simerl et al. Aerial and Collimated Sensor Radiological Mapping Following Dispersal of Activated Potassium Bromide
Litvak et al. Gamma and neutron spectrometers designed for installation onboard the lunar rover