Whitham et al., 2010 - Google Patents
Studying the applicability of the scratchpad memory management unitWhitham et al., 2010
View PDF- Document ID
- 16027978596180975845
- Author
- Whitham J
- Audsley N
- Publication year
- Publication venue
- 2010 16th IEEE Real-Time and Embedded Technology and Applications Symposium
External Links
Snippet
A combination of a scratchpad and scratchpad memory management unit (SMMU) has been proposed as a way to implement fast and time-predictable memory access operations in programs that use dynamic data structures. A memory access operation is time-predictable if …
- 230000015654 memory 0 title abstract description 62
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F8/00—Arrangements for software engineering
- G06F8/40—Transformations of program code
- G06F8/41—Compilation
- G06F8/44—Encoding
- G06F8/443—Optimisation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for programme control, e.g. control unit
- G06F9/06—Arrangements for programme control, e.g. control unit using stored programme, i.e. using internal store of processing equipment to receive and retain programme
- G06F9/44—Arrangements for executing specific programmes
- G06F9/4421—Execution paradigms
- G06F9/4428—Object-oriented
- G06F9/443—Object-oriented method invocation or resolution
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F8/00—Arrangements for software engineering
- G06F8/40—Transformations of program code
- G06F8/41—Compilation
- G06F8/45—Exploiting coarse grain parallelism in compilation, i.e. parallelism between groups of instructions
- G06F8/456—Parallelism detection
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F8/00—Arrangements for software engineering
- G06F8/40—Transformations of program code
- G06F8/41—Compilation
- G06F8/43—Checking; Contextual analysis
- G06F8/436—Semantic checking
- G06F8/437—Type checking
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for programme control, e.g. control unit
- G06F9/06—Arrangements for programme control, e.g. control unit using stored programme, i.e. using internal store of processing equipment to receive and retain programme
- G06F9/46—Multiprogramming arrangements
- G06F9/50—Allocation of resources, e.g. of the central processing unit [CPU]
- G06F9/5005—Allocation of resources, e.g. of the central processing unit [CPU] to service a request
- G06F9/5011—Allocation of resources, e.g. of the central processing unit [CPU] to service a request the resources being hardware resources other than CPUs, Servers and Terminals
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for programme control, e.g. control unit
- G06F9/06—Arrangements for programme control, e.g. control unit using stored programme, i.e. using internal store of processing equipment to receive and retain programme
- G06F9/30—Arrangements for executing machine-instructions, e.g. instruction decode
- G06F9/38—Concurrent instruction execution, e.g. pipeline, look ahead
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for programme control, e.g. control unit
- G06F9/06—Arrangements for programme control, e.g. control unit using stored programme, i.e. using internal store of processing equipment to receive and retain programme
- G06F9/46—Multiprogramming arrangements
- G06F9/48—Programme initiating; Programme switching, e.g. by interrupt
- G06F9/4806—Task transfer initiation or dispatching
- G06F9/4843—Task transfer initiation or dispatching by program, e.g. task dispatcher, supervisor, operating system
- G06F9/4881—Scheduling strategies for dispatcher, e.g. round robin, multi-level priority queues
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F12/00—Accessing, addressing or allocating within memory systems or architectures
- G06F12/02—Addressing or allocation; Relocation
- G06F12/0223—User address space allocation, e.g. contiguous or non contiguous base addressing
- G06F12/023—Free address space management
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for programme control, e.g. control unit
- G06F9/06—Arrangements for programme control, e.g. control unit using stored programme, i.e. using internal store of processing equipment to receive and retain programme
- G06F9/44—Arrangements for executing specific programmes
- G06F9/455—Emulation; Software simulation, i.e. virtualisation or emulation of application or operating system execution engines
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F11/00—Error detection; Error correction; Monitoring
- G06F11/36—Preventing errors by testing or debugging software
- G06F11/3604—Software analysis for verifying properties of programs
- G06F11/3612—Software analysis for verifying properties of programs by runtime analysis
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/50—Computer-aided design
- G06F17/5009—Computer-aided design using simulation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F11/00—Error detection; Error correction; Monitoring
- G06F11/36—Preventing errors by testing or debugging software
- G06F11/362—Software debugging
- G06F11/3636—Software debugging by tracing the execution of the program
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F8/00—Arrangements for software engineering
- G06F8/70—Software maintenance or management
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F1/00—Details of data-processing equipment not covered by groups G06F3/00 - G06F13/00, e.g. cooling, packaging or power supply specially adapted for computer application
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Schoeberl et al. | Worst‐case execution time analysis for a Java processor | |
| Yang et al. | A GPGPU compiler for memory optimization and parallelism management | |
| Hardekopf et al. | Semi-sparse flow-sensitive pointer analysis | |
| US7356802B2 (en) | Automatic customization of classes | |
| Albert et al. | COSTA: Design and implementation of a cost and termination analyzer for java bytecode | |
| Bae et al. | The cetus source-to-source compiler infrastructure: overview and evaluation | |
| Yang et al. | A unified optimizing compiler framework for different GPGPU architectures | |
| Rawat et al. | Resource conscious reuse-driven tiling for GPUs | |
| Whitham et al. | Studying the applicability of the scratchpad memory management unit | |
| US7818731B2 (en) | Method and system for reducing memory reference overhead associated with treadprivate variables in parallel programs | |
| Tournavitis et al. | Semi-automatic extraction and exploitation of hierarchical pipeline parallelism using profiling information | |
| Li et al. | Compiler-directed scratchpad memory management via graph coloring | |
| Pabalkar et al. | SDRM: Simultaneous determination of regions and function-to-region mapping for scratchpad memories | |
| Merrill et al. | Policy-based tuning for performance portability and library co-optimization | |
| Li et al. | Scratchpad memory allocation for data aggregates via interval coloring in superperfect graphs | |
| Leupers et al. | Software compilation techniques for heterogeneous embedded multi-core systems | |
| Pyka et al. | Operating system integrated energy aware scratchpad allocation strategies for multiprocess applications | |
| Jang et al. | Automatic code overlay generation and partially redundant code fetch elimination | |
| Goossens | Dataflow management, dynamic load balancing, and concurrent processing for real‐time embedded vision applications using Quasar | |
| Bilardi et al. | Fractal matrix multiplication: a case study on portability of cache performance | |
| Kiselev et al. | Impact of parallel code optimization on computer power consumption | |
| Kultala et al. | Aggressively bypassing list scheduler for transport triggered architectures | |
| Starke et al. | Evaluating the design of a VLIW processor for real-time systems | |
| Soliman | Automated Compilation Framework for Scratchpad-based Real-Time Systems. | |
| Chen et al. | A hardware/software framework for instruction and data scratchpad memory allocation |