Bagnulo et al., 2006 - Google Patents
An incremental approach to IPv6 multihomingBagnulo et al., 2006
View PDF- Document ID
- 16199945034813324098
- Author
- Bagnulo M
- Martinez A
- Azcorra A
- De Launois C
- Publication year
- Publication venue
- Computer Communications
External Links
Snippet
The availability of two or more connectivity providers (configuration known as multihoming) allows improvements in failure tolerance and enables traffic engineering capabilities. Current IPv4 multihoming solutions suffer from scalability limitations. In this article we …
- 238000001914 filtration 0 abstract description 31
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L29/00—Arrangements, apparatus, circuits or systems, not covered by a single one of groups H04L1/00 - H04L27/00 contains provisionally no documents
- H04L29/12—Arrangements, apparatus, circuits or systems, not covered by a single one of groups H04L1/00 - H04L27/00 contains provisionally no documents characterised by the data terminal contains provisionally no documents
- H04L29/12009—Arrangements for addressing and naming in data networks
- H04L29/12047—Directories; name-to-address mapping
- H04L29/12056—Directories; name-to-address mapping involving standard directories and standard directory access protocols
- H04L29/12066—Directories; name-to-address mapping involving standard directories and standard directory access protocols using Domain Name System [DNS]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L29/00—Arrangements, apparatus, circuits or systems, not covered by a single one of groups H04L1/00 - H04L27/00 contains provisionally no documents
- H04L29/12—Arrangements, apparatus, circuits or systems, not covered by a single one of groups H04L1/00 - H04L27/00 contains provisionally no documents characterised by the data terminal contains provisionally no documents
- H04L29/12009—Arrangements for addressing and naming in data networks
- H04L29/1233—Mapping of addresses of the same type; Address translation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L61/00—Network arrangements or network protocols for addressing or naming
- H04L61/25—Network arrangements or network protocols for addressing or naming mapping of addresses of the same type; address translation
- H04L61/2503—Internet protocol [IP] address translation
- H04L61/256—Network address translation [NAT] traversal
- H04L61/2564—Network address translation [NAT] traversal for a higher-layer protocol, e.g. for session initiation protocol [SIP]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L63/00—Network architectures or network communication protocols for network security
- H04L63/14—Network architectures or network communication protocols for network security for detecting or protecting against malicious traffic
- H04L63/1441—Countermeasures against malicious traffic
- H04L63/1458—Denial of Service
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L61/00—Network arrangements or network protocols for addressing or naming
- H04L61/15—Directories; Name-to-address mapping
- H04L61/1505—Directories; Name-to-address mapping involving standard directories or standard directory access protocols
- H04L61/1511—Directories; Name-to-address mapping involving standard directories or standard directory access protocols using domain name system [DNS]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L29/00—Arrangements, apparatus, circuits or systems, not covered by a single one of groups H04L1/00 - H04L27/00 contains provisionally no documents
- H04L29/02—Communication control; Communication processing contains provisionally no documents
- H04L29/06—Communication control; Communication processing contains provisionally no documents characterised by a protocol
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L67/00—Network-specific arrangements or communication protocols supporting networked applications
- H04L67/10—Network-specific arrangements or communication protocols supporting networked applications in which an application is distributed across nodes in the network
- H04L67/1002—Network-specific arrangements or communication protocols supporting networked applications in which an application is distributed across nodes in the network for accessing one among a plurality of replicated servers, e.g. load balancing
- H04L67/1036—Load balancing of requests to servers for services different from user content provisioning, e.g. load balancing to DNS servers or firewalls
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L45/00—Routing or path finding of packets in data switching networks
- H04L45/02—Topology update or discovery
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L65/00—Network arrangements or protocols for real-time communications
- H04L65/10—Signalling, control or architecture
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L61/00—Network arrangements or network protocols for addressing or naming
- H04L61/20—Address allocation
- H04L61/2007—Address allocation internet protocol [IP] addresses
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L69/00—Application independent communication protocol aspects or techniques in packet data networks
- H04L69/16—Transmission control protocol/internet protocol [TCP/IP] or user datagram protocol [UDP]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L69/00—Application independent communication protocol aspects or techniques in packet data networks
- H04L69/40—Techniques for recovering from a failure of a protocol instance or entity, e.g. failover routines, service redundancy protocols, protocol state redundancy or protocol service redirection in case of a failure or disaster recovery
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L41/00—Arrangements for maintenance or administration or management of packet switching networks
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L43/00—Arrangements for monitoring or testing packet switching networks
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATIONS NETWORKS
- H04W80/00—Wireless network protocols or protocol adaptations to wireless operation, e.g. WAP [Wireless Application Protocol]
- H04W80/04—Network layer protocols, e.g. mobile IP [Internet Protocol]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L12/00—Data switching networks
- H04L12/02—Details
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Abley et al. | Operation of anycast services | |
| McPherson et al. | Architectural considerations of IP anycast | |
| JP2006086800A (en) | Communication device for selecting source address | |
| Huston | Architectural approaches to multi-homing for IPv6 | |
| Thaler | Evolution of the IP Model | |
| De Launois et al. | The paths toward IPv6 multihoming. | |
| Beck et al. | Monitoring the neighbor discovery protocol | |
| Frankel et al. | Guidelines for the secure deployment of IPv6 | |
| Gurtov et al. | Hi3: An efficient and secure networking architecture for mobile hosts | |
| García-Martínez et al. | The Shim6 architecture for IPv6 multihoming | |
| Barré et al. | Implementation and evaluation of the Shim6 protocol in the Linux kernel | |
| Bagnulo et al. | An incremental approach to IPv6 multihoming | |
| Barré et al. | Improved path exploration in shim6-based multihoming | |
| Bagnulo et al. | Efficient security for IPv6 multihoming | |
| Bagnulo Braun et al. | An incremental approach to IPv6 multihoming | |
| Sy et al. | Accelerating QUIC’s connection establishment on high-latency access networks | |
| Evans | Methods for secure decentralized routing in open networks | |
| Dhraief et al. | An M2M gateway-centric architecture for autonomic healing and optimising of machine-to-machine overlay networks | |
| Caiazza et al. | TCP‐based traceroute: An evaluation of different probing methods | |
| de Launois | Unleashing traffic engineering for IPv6 multihomed sites | |
| Sulaeman | A highly-available multiple region multi-access edge computing platform with traffic failover | |
| de Vries | Improving anycast with measurements | |
| Shang et al. | IVI-based locator/ID separation architecture for IPv4/IPv6 transition | |
| Keränen | Host Identity Protocol-based Network Address Translator Traversal in Peer-to-Peer Environments | |
| Ciminiera et al. | Distributed connectivity service for a SIP infrastructure |