Yang et al., 2016 - Google Patents
Husky: Towards a more efficient and expressive distributed computing frameworkYang et al., 2016
View PDF- Document ID
- 16253542375390285532
- Author
- Yang F
- Li J
- Cheng J
- Publication year
- Publication venue
- Proceedings of the VLDB Endowment
External Links
Snippet
Finding efficient, expressive and yet intuitive programming models for data-parallel computing system is an important and open problem. Systems like Hadoop and Spark have been widely adopted for massive data processing, as coarse-grained primitives like map …
- 238000011161 development 0 abstract description 8
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for programme control, e.g. control unit
- G06F9/06—Arrangements for programme control, e.g. control unit using stored programme, i.e. using internal store of processing equipment to receive and retain programme
- G06F9/46—Multiprogramming arrangements
- G06F9/48—Programme initiating; Programme switching, e.g. by interrupt
- G06F9/4806—Task transfer initiation or dispatching
- G06F9/4843—Task transfer initiation or dispatching by program, e.g. task dispatcher, supervisor, operating system
- G06F9/485—Task life-cycle, e.g. stopping, restarting, resuming execution
- G06F9/4856—Task life-cycle, e.g. stopping, restarting, resuming execution resumption being on a different machine, e.g. task migration, virtual machine migration
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for programme control, e.g. control unit
- G06F9/06—Arrangements for programme control, e.g. control unit using stored programme, i.e. using internal store of processing equipment to receive and retain programme
- G06F9/46—Multiprogramming arrangements
- G06F9/50—Allocation of resources, e.g. of the central processing unit [CPU]
- G06F9/5061—Partitioning or combining of resources
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for programme control, e.g. control unit
- G06F9/06—Arrangements for programme control, e.g. control unit using stored programme, i.e. using internal store of processing equipment to receive and retain programme
- G06F9/46—Multiprogramming arrangements
- G06F9/50—Allocation of resources, e.g. of the central processing unit [CPU]
- G06F9/5005—Allocation of resources, e.g. of the central processing unit [CPU] to service a request
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for programme control, e.g. control unit
- G06F9/06—Arrangements for programme control, e.g. control unit using stored programme, i.e. using internal store of processing equipment to receive and retain programme
- G06F9/46—Multiprogramming arrangements
- G06F9/54—Interprogramme communication; Intertask communication
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/30—Information retrieval; Database structures therefor; File system structures therefor
- G06F17/30286—Information retrieval; Database structures therefor; File system structures therefor in structured data stores
- G06F17/30575—Replication, distribution or synchronisation of data between databases or within a distributed database; Distributed database system architectures therefor
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for programme control, e.g. control unit
- G06F9/06—Arrangements for programme control, e.g. control unit using stored programme, i.e. using internal store of processing equipment to receive and retain programme
- G06F9/44—Arrangements for executing specific programmes
- G06F9/455—Emulation; Software simulation, i.e. virtualisation or emulation of application or operating system execution engines
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/30—Information retrieval; Database structures therefor; File system structures therefor
- G06F17/30067—File systems; File servers
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/30—Information retrieval; Database structures therefor; File system structures therefor
- G06F17/30943—Information retrieval; Database structures therefor; File system structures therefor details of database functions independent of the retrieved data type
- G06F17/30946—Information retrieval; Database structures therefor; File system structures therefor details of database functions independent of the retrieved data type indexing structures
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/30—Information retrieval; Database structures therefor; File system structures therefor
- G06F17/30861—Retrieval from the Internet, e.g. browsers
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F11/00—Error detection; Error correction; Monitoring
- G06F11/07—Error detection; Error correction; Monitoring responding to the occurence of a fault, e.g. fault tolerance
- G06F11/16—Error detection or correction of the data by redundancy in hardware
- G06F11/20—Error detection or correction of the data by redundancy in hardware using active fault-masking, e.g. by switching out faulty elements or by switching in spare elements
- G06F11/202—Error detection or correction of the data by redundancy in hardware using active fault-masking, e.g. by switching out faulty elements or by switching in spare elements where processing functionality is redundant
- G06F11/2023—Error detection or correction of the data by redundancy in hardware using active fault-masking, e.g. by switching out faulty elements or by switching in spare elements where processing functionality is redundant details of failing over
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F8/00—Arrangements for software engineering
- G06F8/40—Transformations of program code
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F15/00—Digital computers in general; Data processing equipment in general
- G06F15/16—Combinations of two or more digital computers each having at least an arithmetic unit, a programme unit and a register, e.g. for a simultaneous processing of several programmes
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F2201/00—Indexing scheme relating to error detection, to error correction, and to monitoring
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F2209/00—Indexing scheme relating to G06F9/00
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Yang et al. | Husky: Towards a more efficient and expressive distributed computing framework | |
| Heidari et al. | Scalable graph processing frameworks: A taxonomy and open challenges | |
| Dean et al. | MapReduce: simplified data processing on large clusters | |
| Zaharia et al. | Resilient distributed datasets: A {Fault-Tolerant} abstraction for {In-Memory} cluster computing | |
| Chen et al. | Computation and communication efficient graph processing with distributed immutable view | |
| Lin et al. | Design patterns for efficient graph algorithms in MapReduce | |
| US8510538B1 (en) | System and method for limiting the impact of stragglers in large-scale parallel data processing | |
| Neary et al. | Advanced eager scheduling for Java-based adaptively parallel computing | |
| Zhang et al. | Harp: Collective communication on hadoop | |
| Roussev et al. | A cloud computing platform for large-scale forensic computing | |
| Sakr | Processing large-scale graph data: A guide to current technology | |
| da Silva Morais | Survey on frameworks for distributed computing: Hadoop, spark and storm | |
| Moise et al. | Optimizing intermediate data management in MapReduce computations | |
| Yan et al. | Systems for big graph analytics | |
| Rathore | Map reduce architecture for grid | |
| Lu et al. | Fast failure recovery in vertex-centric distributed graph processing systems | |
| Chen et al. | Providing scalable database services on the cloud | |
| Chan et al. | A distributed stream library for Java 8 | |
| Yan et al. | Efficient processing of very large graphs in a small cluster | |
| Kurt et al. | A fault-tolerant environment for large-scale query processing | |
| Abughofa et al. | Towards online graph processing with spark streaming | |
| Babazadeh et al. | The stream software connector design space: frameworks and languages for distributed stream processing | |
| Pan | The performance comparison of hadoop and spark | |
| Lazovik et al. | Runtime modifications of spark data processing pipelines | |
| Khan et al. | Computational performance analysis of cluster-based technologies for big data analytics |