Kumar et al., 2019 - Google Patents
Depth compression via planar segmentationKumar et al., 2019
- Document ID
- 16324998359366904585
- Author
- Kumar S
- Ramakrishnan K
- Publication year
- Publication venue
- Multimedia Tools and Applications
External Links
Snippet
Augmented Reality applications are set to revolutionize the smartphone industry due to the integration of RGB-D sensors into mobile devices. Given the large number of smartphone users, efficient storage and transmission of RGB-D data is of paramount interest to the …
- 230000011218 segmentation 0 title abstract description 63
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/50—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
- H04N19/503—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
- H04N19/51—Motion estimation or motion compensation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/169—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
- H04N19/17—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/134—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/102—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/60—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding
- H04N19/61—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding in combination with predictive coding
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20172—Image enhancement details
- G06T2207/20182—Noise reduction or smoothing in the temporal domain; Spatio-temporal filtering
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/46—Embedding additional information in the video signal during the compression process
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10016—Video; Image sequence
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20112—Image segmentation details
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/85—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using pre-processing or post-processing specially adapted for video compression
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T9/00—Image coding, e.g. from bit-mapped to non bit-mapped
- G06T9/001—Model-based coding, e.g. wire frame
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/30—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using hierarchical techniques, e.g. scalability
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N5/00—Details of television systems
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T5/00—Image enhancement or restoration, e.g. from bit-mapped to bit-mapped creating a similar image
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| EP1639829B1 (en) | Optical flow estimation method | |
| WO2017080420A1 (en) | Auxiliary data for artifacts –aware view synthesis | |
| CN112534818A (en) | Machine learning based adaptation of coding parameters for video coding using motion and object detection | |
| Borges et al. | Fractional super-resolution of voxelized point clouds | |
| US20220038709A1 (en) | Video Coding Based on Global Motion Compensated Motion Vectors | |
| Han et al. | Time-varying mesh compression using an extended block matching algorithm | |
| Yang et al. | A bundled-optimization model of multiview dense depth map synthesis for dynamic scene reconstruction | |
| EP3850850B1 (en) | Video coding based on global motion compensated motion vector predictors | |
| Makar et al. | Interframe coding of canonical patches for low bit-rate mobile augmented reality | |
| Favorskaya et al. | Authentication and copyright protection of videos under transmitting specifications | |
| Choi et al. | Reliability-based multiview depth enhancement considering interview coherence | |
| Porikli et al. | Compressed domain video object segmentation | |
| Kumar et al. | Depth compression via planar segmentation | |
| Zhang et al. | An inter-image redundancy measure for image set compression | |
| WO2015056712A1 (en) | Moving image encoding method, moving image decoding method, moving image encoding device, moving image decoding device, moving image encoding program, and moving image decoding program | |
| Zhang et al. | Deep region segmentation-based intra prediction for depth video coding | |
| Ji et al. | Learning-based visual compression | |
| Kavitha et al. | A survey of image compression methods for low depth-of-field images and image sequences | |
| Morand et al. | Scalable object-based video retrieval in hd video databases | |
| Wood | Task oriented video coding: A survey | |
| Li et al. | Fast depth intra coding based on texture feature and spatio‐temporal correlation in 3D‐HEVC | |
| Duch et al. | Depth map compression via 3D region-based representation | |
| Chen et al. | Multisource surveillance video data coding with hierarchical knowledge library | |
| Kum et al. | Intra-stream encoding for multiple depth streams | |
| Wang et al. | A key frame extraction method of hevc video based on clustering algorithm for electric utilities management |