[go: up one dir, main page]

Wang et al., 2005 - Google Patents

Multicast communication in wormhole-routed symmetric networks with hamiltonian cycle model

Wang et al., 2005

Document ID
16587520115411415053
Author
Wang N
Yen C
Chu C
Publication year
Publication venue
Journal of Systems Architecture

External Links

Snippet

In this paper, we first introduce a new hamiltonian cycle model for exploiting the features of symmetric networks. Based on this model, we propose two efficient multicast routing algorithms, uniform multicast routing algorithm and fixed multicast routing algorithm, in …
Continue reading at www.sciencedirect.com (other versions)

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F15/00Digital computers in general; Data processing equipment in general
    • G06F15/16Combinations of two or more digital computers each having at least an arithmetic unit, a programme unit and a register, e.g. for a simultaneous processing of several programmes
    • G06F15/163Interprocessor communication
    • G06F15/173Interprocessor communication using an interconnection network, e.g. matrix, shuffle, pyramid, star, snowflake
    • G06F15/17356Indirect interconnection networks
    • G06F15/17368Indirect interconnection networks non hierarchical topologies
    • G06F15/17381Two dimensional, e.g. mesh, torus
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/02Details
    • H04L12/16Arrangements for providing special services to substations contains provisionally no documents
    • H04L12/18Arrangements for providing special services to substations contains provisionally no documents for broadcast or conference, e.g. multicast
    • H04L12/1886Arrangements for providing special services to substations contains provisionally no documents for broadcast or conference, e.g. multicast with traffic restrictions for efficiency improvement, e.g. involving subnets or subdomains
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F15/00Digital computers in general; Data processing equipment in general
    • G06F15/16Combinations of two or more digital computers each having at least an arithmetic unit, a programme unit and a register, e.g. for a simultaneous processing of several programmes
    • G06F15/163Interprocessor communication
    • G06F15/173Interprocessor communication using an interconnection network, e.g. matrix, shuffle, pyramid, star, snowflake
    • G06F15/17337Direct connection machines, e.g. completely connected computers, point to point communication networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L49/00Packet switching elements
    • H04L49/25Routing or path finding through a switch fabric
    • H04L49/253Connections establishment or release between ports
    • H04L49/254Centralized controller, i.e. arbitration or scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/16Multipoint routing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/54Store-and-forward switching systems
    • H04L12/56Packet switching systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L49/00Packet switching elements
    • H04L49/20Support for services or operations
    • H04L49/201Multicast or broadcast
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L49/00Packet switching elements
    • H04L49/25Routing or path finding through a switch fabric
    • H04L49/256Routing or path finding in ATM switching fabrics
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/48Routing tree calculation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/02Topology update or discovery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/12Shortest path evaluation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/04Interdomain routing, e.g. hierarchical routing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/06Deflection routing, e.g. hot-potato routing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/40Wormhole routing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/30Special provisions for routing multiclass traffic
    • H04L45/302Route determination based on requested QoS
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L49/00Packet switching elements
    • H04L49/30Peripheral units, e.g. input or output ports
    • H04L49/3009Header conversion, routing tables or routing tags
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L49/00Packet switching elements
    • H04L49/10Switching fabric construction

Similar Documents

Publication Publication Date Title
Chiu The odd-even turn model for adaptive routing
Xu et al. Efficient implementation of barrier synchronization in wormhole-routed hypercube multicomputers
Kim et al. Hypercube communication delay with wormhole routing
Wang et al. Multicast communication in wormhole-routed symmetric networks with hamiltonian cycle model
Wang et al. Recursive partitioning multicast: A bandwidth-efficient routing for networks-on-chip
Hu et al. Power-efficient tree-based multicast support for networks-on-chip
Bahrebar et al. The Hamiltonian-based odd–even turn model for maximally adaptive routing in 2D mesh networks-on-chip
US20060227774A1 (en) Collective network routing
Kim et al. Performance and architectural features of segmented multiple bus system
Lee et al. MRCN: Throughput-oriented multicast routing for customized network-on-chips
Fleury et al. Strategies for path-based multicasting in wormhole-routed meshes
Samman et al. Planar adaptive network-on-chip supporting deadlock-free and efficient tree-based multicast routing method
Velayudham et al. An overview of multicast routing algorithms in network on chip
Wang et al. Multicast communication in wormhole-routed 2D torus networks with hamiltonian cycle model
Larson et al. The möbius cubes
Moadeli et al. Quarc: A high-efficiency network on-chip architecture
Sun et al. Barrier synchronization on wormhole-routed networks
Omari Adaptive Algorithms for Wormhole-Routed Single-Port Mesh-Hypercube Network
Moadeli et al. Quarc: A novel network-on-chip architecture
Chen et al. Multicast communication in wormhole-routed star graph interconnection networks
Kamal et al. Network on chip: topologies, routing, implementation
CN120321204B (en) Network architecture based on multi-core transmission
Kiasari et al. An accurate mathematical performance model of adaptive routing in the star graph
Veena et al. Design and Implementation of Five Port Label Switched NoC Router Using FPGA
Prasad et al. An approach for multicast routing in networks-on-chip