Mansour et al., 2019 - Google Patents
Automated vehicle detection in satellite images using deep learningMansour et al., 2019
View PDF- Document ID
- 16651145496738747333
- Author
- Mansour A
- Hassan A
- Hussein W
- Said E
- Publication year
- Publication venue
- International Conference on Aerospace Sciences and Aviation Technology
External Links
Snippet
Automatic detection of small objects such as vehicles in satellite images is a very challenging task, due to the complexity of the background, vehicles colors, the large size of ground sample distance (GSD) for satellite images and jamming caused by buildings and …
- 238000001514 detection method 0 title abstract description 30
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/20—Image acquisition
- G06K9/32—Aligning or centering of the image pick-up or image-field
- G06K9/3233—Determination of region of interest
- G06K9/3241—Recognising objects as potential recognition candidates based on visual cues, e.g. shape
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/00624—Recognising scenes, i.e. recognition of a whole field of perception; recognising scene-specific objects
- G06K9/0063—Recognising patterns in remote scenes, e.g. aerial images, vegetation versus urban areas
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/36—Image preprocessing, i.e. processing the image information without deciding about the identity of the image
- G06K9/46—Extraction of features or characteristics of the image
- G06K9/4671—Extracting features based on salient regional features, e.g. Scale Invariant Feature Transform [SIFT] keypoints
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/6217—Design or setup of recognition systems and techniques; Extraction of features in feature space; Clustering techniques; Blind source separation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/68—Methods or arrangements for recognition using electronic means using sequential comparisons of the image signals with a plurality of references in which the sequence of the image signals or the references is relevant, e.g. addressable memory
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/00624—Recognising scenes, i.e. recognition of a whole field of perception; recognising scene-specific objects
- G06K9/00771—Recognising scenes under surveillance, e.g. with Markovian modelling of scene activity
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/6267—Classification techniques
- G06K9/6268—Classification techniques relating to the classification paradigm, e.g. parametric or non-parametric approaches
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/6201—Matching; Proximity measures
- G06K9/6202—Comparing pixel values or logical combinations thereof, or feature values having positional relevance, e.g. template matching
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/6288—Fusion techniques, i.e. combining data from various sources, e.g. sensor fusion
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30181—Earth observation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10032—Satellite or aerial image; Remote sensing
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K2209/00—Indexing scheme relating to methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/88—Radar or analogous systems specially adapted for specific applications
- G01S13/89—Radar or analogous systems specially adapted for specific applications for mapping or imaging
- G01S13/90—Radar or analogous systems specially adapted for specific applications for mapping or imaging using synthetic aperture techniques, e.g. correcting range migration errors
- G01S13/9035—Particular SAR processing techniques not provided for elsewhere, e.g. squint mode, doppler beam-sharpening mode, spotlight mode, bistatic SAR, inverse SAR
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Mansour et al. | Automated vehicle detection in satellite images using deep learning | |
| Qu et al. | Vehicle detection from high-resolution aerial images using spatial pyramid pooling-based deep convolutional neural networks | |
| Li et al. | A review on deep learning techniques for cloud detection methodologies and challenges | |
| CN108510467A (en) | SAR image target recognition method based on variable depth shape convolutional neural networks | |
| WO2020020472A1 (en) | A computer-implemented method and system for detecting small objects on an image using convolutional neural networks | |
| CN108960190B (en) | SAR video target detection method based on FCN image sequence model | |
| Wang et al. | Combing Single Shot Multibox Detector with transfer learning for ship detection using Chinese Gaofen-3 images | |
| Aposporis | Object detection methods for improving UAV autonomy and remote sensing applications | |
| Jiang et al. | Remote sensing object detection based on convolution and Swin transformer | |
| Long et al. | Object detection research of SAR image using improved faster region-based convolutional neural network | |
| Cherif et al. | Aerial LiDAR-based 3D object detection and tracking for traffic monitoring | |
| Yildirim et al. | Automated identification of vehicles in very high-resolution UAV orthomosaics using YOLOv7 deep learning model. | |
| Zhao et al. | An aircraft detection method based on improved mask R-CNN in remotely sensed imagery | |
| Wu et al. | Multimodal collaboration networks for geospatial vehicle detection in dense, occluded, and large-scale events | |
| Omar et al. | Aerial dataset integration for vehicle detection based on YOLOv4 | |
| Naseer et al. | Hybrid Deep Learning Aerial Framework for Road Scene Objects Segmentation and Classification | |
| Wang et al. | Big Map R-CNN for object detection in large-scale remote sensing images. | |
| Hassan et al. | A deep learning framework for automatic airplane detection in remote sensing satellite images | |
| Laban et al. | Convolutional neural network with dilated anchors for object detection in very high resolution satellite images | |
| Hurin et al. | Comparative analysis of spectral anomalies detection methods on images from on-board remote sensing systems | |
| Alshaibani et al. | Airplane type Identification based on mask RCNN and drone images | |
| Samanta et al. | Spatial-resolution independent object detection framework for aerial imagery | |
| Singhal et al. | Comparative Analysis of Deep Learning based Vehicle Detection Approaches | |
| Li et al. | Semantic segmentation for high-resolution aerial imagery using multi-skip network and Markov random fields | |
| Chen et al. | Small Object Detection with Small Samples Using High-Resolution Remote Sensing Images |