[go: up one dir, main page]

Osmond et al., 1998 - Google Patents

Component serial digital video transport over wavelength-multiplexed fiber optic systems

Osmond et al., 1998

Document ID
16623299450650536752
Author
Osmond A
Storozum S
Publication year
Publication venue
140th SMPTE Technical Conference and Exhibit

External Links

Snippet

As digital video technology becomes ubiquitous, moving large quantities of high-quality, uncompressed digital video between distant locations has become a requirement. This paper addresses the application of optical transmission of these signals using Wavelength …
Continue reading at ieeexplore.ieee.org (other versions)

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2507Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion
    • H04B10/2513Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion due to chromatic dispersion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/29Repeaters
    • H04B10/291Repeaters in which processing or amplification is carried out without conversion of the main signal from optical form
    • H04B10/293Signal power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0241Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/501Structural aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0278WDM optical network architectures
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
    • G02B6/00Light guides
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29379Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
    • G02B6/00Light guides
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29346Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by wave or beam interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/66Non-coherent receivers, e.g. using direct detection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B2210/00Indexing scheme relating to optical transmission systems
    • H04B2210/25Distortion or dispersion compensation
    • H04B2210/258Distortion or dispersion compensation treating each wavelength or wavelength band separately
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01SDEVICES USING STIMULATED EMISSION
    • H01S3/00Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves
    • H01S3/05Construction or shape of optical resonators; Accomodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06754Fibre amplifiers
    • H01S3/06762Fibre amplifiers having a specific amplification band
    • H01S3/0677L-band amplifiers, i.e. amplification in the range of about 1560 nm to 1610 nm
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION

Similar Documents

Publication Publication Date Title
KR101376167B1 (en) Optical transmission between a central terminal and a plurality of client terminals via an optical network
US7991295B2 (en) Method and system for compensating for optical dispersion in an optical signal
WO2001055756A1 (en) Composite optical fiber transmission line and method
US11444718B2 (en) Optical line terminal and optical fiber access system with increased capacity
Olsson et al. WDM to OTDM multiplexing using an ultrafast all-optical wavelength converter
Clesca et al. 1.5 μm fluoride-based fiber amplifiers for wideband multichannel transport networks
Chraplyvy et al. Terabit/second transmission experiments
Eggleton Dynamic dispersion compensation devices for high speed transmission systems
US20060067704A1 (en) Method and apparatus for dispersion management in optical communication systems
WO2004023693A2 (en) System and method for high bit-rate optical time division multiplexing (otdm)
Osmond et al. Component serial digital video transport over wavelength-multiplexed fiber optic systems
Gnauck et al. Dynamic add/drop of 8-of-16 10 Gb/s channels in 4/spl times/40 km semiconductor-optical-amplifier-based WDM system
Tomizawa et al. Recent progress and standardization activities on 40 Gbit/s channel technologies
Rawat DWDM Technology for High Speed Optical Communications.
Iannone et al. Hybrid SOA-Raman amplifiers for fiber-to-the-home and metro networks
White et al. Optical local area networking using CWDM
Thiele et al. 7 CWDM—Upgrade
Kerfoot et al. Future directions for undersea communications
Xu et al. Quantitative experimental study of intra-channel nonlinear timing jitter in a 10 Gb/s terrestrial WDM return-to-zero system
Murai et al. 3/spl times/80 Gbit/s WDM-transmission over 600 km using mode-locked laser diodes with an 80 Gbit/s OTDM module
Akiba et al. WDM undersea cable network technology for 100 Gb/s and beyond
JP2001036468A (en) WDM transmission system
Nishi et al. 22-Gbit/s× 16-ch WDM receiver based on a Si-Ge-silica monolithic photonic platform and its application to 40-km transmission
Lee et al. Field trial of 1.6 Tb/s (40 channels/spl times/40 Gb/s) NRZ signals over 511 km standard single mode fiber using conventional optical amplifiers
Kowalski Modern optical networks and systems