[go: up one dir, main page]

Shen et al., 2012 - Google Patents

Two-stage model-based feature compensation for robust speech recognition

Shen et al., 2012

Document ID
16811283020191975716
Author
Shen H
Liu G
Guo J
Publication year
Publication venue
Computing

External Links

Snippet

This paper presents a combination approach to robust speech recognition by using two- stage model-based feature compensation. Gaussian mixture model (GMM)-based and hidden Markov model (HMM)-based compensation approaches are combined together and …
Continue reading at link.springer.com (other versions)

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
    • G10L15/00Speech recognition
    • G10L15/08Speech classification or search
    • G10L15/14Speech classification or search using statistical models, e.g. hidden Markov models [HMMs]
    • G10L15/142Hidden Markov Models [HMMs]
    • G10L15/144Training of HMMs
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
    • G10L15/00Speech recognition
    • G10L15/06Creation of reference templates; Training of speech recognition systems, e.g. adaptation to the characteristics of the speaker's voice
    • G10L15/065Adaptation
    • G10L15/07Adaptation to the speaker
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
    • G10L21/00Processing of the speech or voice signal to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
    • G10L21/02Speech enhancement, e.g. noise reduction or echo cancellation
    • G10L21/0208Noise filtering
    • G10L21/0216Noise filtering characterised by the method used for estimating noise
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
    • G10L15/00Speech recognition
    • G10L15/08Speech classification or search
    • G10L15/18Speech classification or search using natural language modelling
    • G10L15/183Speech classification or search using natural language modelling using context dependencies, e.g. language models
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
    • G10L15/00Speech recognition
    • G10L15/06Creation of reference templates; Training of speech recognition systems, e.g. adaptation to the characteristics of the speaker's voice
    • G10L15/063Training
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
    • G10L17/00Speaker identification or verification
    • G10L17/04Training, enrolment or model building
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
    • G10L15/00Speech recognition
    • G10L15/02Feature extraction for speech recognition; Selection of recognition unit
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
    • G10L15/00Speech recognition
    • G10L15/20Speech recognition techniques specially adapted for robustness in adverse environments, e.g. in noise, of stress induced speech
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
    • G10L17/00Speaker identification or verification
    • G10L17/26Recognition of special voice characteristics, e.g. for use in lie detectors; Recognition of animal voices
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
    • G10L25/00Speech or voice analysis techniques not restricted to a single one of groups G10L15/00-G10L21/00
    • G10L25/03Speech or voice analysis techniques not restricted to a single one of groups G10L15/00-G10L21/00 characterised by the type of extracted parameters
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signal analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signal, using source filter models or psychoacoustic analysis
    • G10L19/02Speech or audio signal analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signal, using source filter models or psychoacoustic analysis using spectral analysis, e.g. transform vocoders or subband vocoders
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
    • G10L21/00Processing of the speech or voice signal to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
    • G10L21/003Changing voice quality, e.g. pitch or formants
    • G10L21/007Changing voice quality, e.g. pitch or formants characterised by the process used
    • G10L21/013Adapting to target pitch

Similar Documents

Publication Publication Date Title
Deng et al. Large-vocabulary speech recognition under adverse acoustic environments.
Wang et al. Speaker and noise factorization for robust speech recognition
Cui et al. Noise robust speech recognition using feature compensation based on polynomial regression of utterance SNR
US20070033027A1 (en) Systems and methods employing stochastic bias compensation and bayesian joint additive/convolutive compensation in automatic speech recognition
Frey et al. Algonquin-learning dynamic noise models from noisy speech for robust speech recognition
Huang et al. An energy-constrained signal subspace method for speech enhancement and recognition in white and colored noises
Kim et al. Feature compensation in the cepstral domain employing model combination
Gales et al. Model-based approaches to handling additive noise in reverberant environments
Cui et al. Stereo hidden Markov modeling for noise robust speech recognition
Shen et al. Two-stage model-based feature compensation for robust speech recognition
Sim et al. A trajectory-based parallel model combination with a unified static and dynamic parameter compensation for noisy speech recognition
Ager et al. Combined waveform-cepstral representation for robust speech recognition
Wang et al. Improving reverberant VTS for hands-free robust speech recognition
Flego et al. Incremental predictive and adaptive noise compensation
Astudillo et al. Propagation of Statistical Information Through Non‐Linear Feature Extractions for Robust Speech Recognition
Tsao et al. An ensemble modeling approach to joint characterization of speaker and speaking environments.
Mandel et al. Analysis-by-synthesis feature estimation for robust automatic speech recognition using spectral masks
Remes et al. Missing feature reconstruction and acoustic model adaptation combined for large vocabulary continuous speech recognition
Shen et al. Model-based feature compensation for robust speech recognition
Wang et al. Missing data solutions for robust speech recognition
Shen et al. Mixed environment compensation based on maximum a posteriori estimation for robust speech recognition
Das et al. Psychoacoustic model compensation for robust continuous speech recognition in additive noise
Hosseinzadeh et al. MLLR method for environmental adaptation in the continuous FARSI speech recognition
Lü et al. Maximum likelihood subband polynomial regression for robust speech recognition
Zhou et al. VTS feature compensation based on two-layer GMM structure for robust speech recognition